tokenpocket官网下载app正版|示波器计量的工作原理

作者: tokenpocket官网下载app正版
2024-03-10 21:11:57

示波器原理 - 什么是示波器?示波器的使用方法 - 知乎

示波器原理 - 什么是示波器?示波器的使用方法 - 知乎首发于示波器使用方法切换模式写文章登录/注册示波器原理 - 什么是示波器?示波器的使用方法是德科技 Keysight Technologies​已认证账号示波器是设计和测试电子设备和器件最常用的工具。数字储存示波器(简称DSO)和混合信号示波器(简称MSO)都是强大的仪器,用于显示及测量随时间变化的电子信号,并且能有助于确定哪一个器件运行正常,而哪一个器件出现故障。示波器还能帮助您确定新近设计的器件是否能按照您想要的方式运行。本文简要介绍示波器原理,让您了解什么是示波器,以及如何操作示波器。我们将会探讨示波器的应用,并概括介绍其基本的测量和性能特征。本文还将介绍不同类型的探头,并讨论它们的优缺点。示波器电子技术在我们的生活中无所不在。每天都有上百万人使用电子产品,例如手机、电视和计算机。随着电子技术的进步,这些产品的工作速度也变得越来越快。如今,大多数电子产品都采用了高速数字技术。工程师们应当能够精确地设计和测试他们在高速数字产品中所使用的元器件。他们在设计和测试元器件时所使用的仪器必须特别适合处理高速和高频的特性才行,而示波器正好是这样的一种仪器。示波器是一种功能强大的工具,在设计和测试电子器件方面很有用。它们在您判定系统器件是否正常方面扮演极为重要的角色,而且还能帮助您确定新设计的元器件是否按照预想的方式进行工作。示波器的功能远比数字万用表更强大,因为它们可以使您观察电子信号的实际情况。示波器的应用极为广泛,包括通用电子测试、工业自动化、汽车、大学的研究实验室以及航空航天 / 国防产业等。许多公司都依赖示波器来查找缺陷,从而制造出质量过硬的产品。好文推荐: 电子信号示波器的主要用途是显示电子信号。通过观察示波器上显示的信号,您可以确定电子系统的某个元器件是否在正常工作。因此,要想了解示波器的工作方式,必须先要了解信号的基本示波器原理。波形特性电子信号会以波形或脉冲的形式出现。波形的基本特性包括:幅度 - 在工程应用中经常使用的幅度定义主要有两个。第一种通常称为峰值幅度,定义为干扰信号的最大位移量。第二种是均方根(RMS)幅度。要计算波形的 RMS 电压,必须将波形值平方并求出平均电压,然后再求平方根。对正弦波来说,RMS 幅度等于峰值幅度的 0.707 倍。相移 - 相移是指两个其他条件都相同的波形之间的水平位移量,以度或弧度为单位。正弦波的周期以 360 度来表示。因此,如果两个正弦波相差半个周期,那么它们的相对相移就是 180 度。周期 - 波形的周期是指波形重复出现一次所花费的时间,以秒为单位。频率 - 每个周期性波形都有一个频率。频率是指波形在一秒内重复出现的次数(如果您使用 Hz 为单位)。频率与周期互为倒数。图 1. 正弦波的峰值幅度和 RMS 幅度图 2. 三角波的周期波形 波形是指波的形状或图像。波形可以提供许多有关信号的信息,例如,它可以告诉您电压是否突然发生改变、呈线性变化或保持不变。标准的波形有很多种,本节仅介绍您最常遇到的几种。正弦波 - 正弦波通常与交流(AC)电源有关,例如您屋内的电源插座。正弦波的峰值幅度并非一直恒定,如果峰值幅度会随着时间不断地下降,我们就称这种波形为阻尼正弦波。图 3. 正弦波方波 / 矩形波 - 方波会在两个不同的值之间周期性地跳动,因此在高点和低点部分的长度会相等。矩形波不同的地方在于高、低点部分的长度并不相等。图 4. 方波三角波 / 锯齿波 - 在三角波中,电压会随着时间呈线性变化。它的信号边沿称为斜波,这是因为其波形会斜升或斜降到某个电压。由于锯齿波前面或后面的信号沿会随着时间产生线性的电压响应,所以看起来与三角波类似。但对面的信号沿几乎是立即下降的。脉冲 - 脉冲是指突然出现在固定电压中的干扰,就像在一个房间中突然打开电灯,然后迅速熄灭电灯的情形。一连串的脉冲被称为脉冲串。延续前面的比喻,这就好比不断重复快速开灯与关灯的动作一样。脉冲是信号中常见的毛刺或错误波形。如果信号只传送一条信息,那么脉冲也可看作是一个波形。图 5. 三角波图 6. 锯齿波图 7. 脉冲复合波波形也可以是以上各种波形的混合。它们不一定要具备周期性,而且可以是非常复杂的波形。模拟信号与数字信号的比较 模拟信号代表给定范围内的任意值。您不妨想象一下模拟时钟,时针每隔 12 个小时旋转 1 周。在此期间,时针一直不断移动,不会出现读值跳动或不连续的情形。现在将它与数字时钟比较一下。数字时钟仅显示小时和分钟,因此是以分钟作为间隔时间。它会一下子从 11:54 跳至 11:55。数字信号同样具备离散和量化的特性。通常,离散信号具有两个可能的值(高或低,1 或 0 等),因此信号会在这两个可能的值之间上下跳动。什么是示波器,您为什么需要它?信号完整性示波器的主要用途是精确地显示电子信号。因此,信号完整性显得非常重要。信号完整性是指示波器重建波形并且精确显示原始信号的能力。由于在示波器的波形不同于真实信号时,测试毫无意义,所以信号完整性低的示波器是没有价值的。但是,无论示波器的性能有多高也无法完全再现真实信号。这是因为当您将示波器连接到电路时,示波器就会变成电路的一部分。换言之会有一些负载效应产生。仪器制造商虽然尽力将负载效应降至最低,但就某种程度而言它们仍然会存在。“高信号完整性对于示波器进行精确测量至关重要。 要想实现稳定设计,您必须知道需要关注哪些技术指标。”示波器的外观一般,现代示波器的外观与图 8 中的示波器相似。然而示波器种类繁多,您的示波器看起来或许会与之不尽相同。尽管如此,大多数示波器都具备一些基本特性。多数示波器的前面板大致可分为几个区域:通道输入、显示屏、水平控制、垂直控制以及触发控制。如果您的示波器未配备 Microsoft Windows 操作系统,那么它很可能会提供一组功能键,用于控制屏幕上的菜单。您可以通过通道输入接头(即插入到探头的连接器)把信号发送到示波器中。显示屏是用来显示这些信号的屏幕。水平和垂直控制区域包含了一些旋钮和按键,可用于控制在显示屏上的信号的水平轴(通常表示时间)和垂直轴(通常表示电压)。触发控制支持您对示波器进行设置,确定在何种条件下时基可以执行采集任务。图 8. Keysight InfiniiVision 2000 X 系列示波器的前面板示波器的后面板如图 9 所示。图 9. Keysight Infiniium 9000 系列示波器的后面板如图所示,许多示波器都拥有与个人计算机相同的连通性,包括光盘驱动器、CD-RW 驱动器、DVD-RW 驱动器、USB端口、串行端口,以及外部监测器、鼠标和键盘输入等。示波器的用途示波器是一种测试与测量仪器,可显示某个变量与另一个变量之间的关系。例如,它可以在显示屏上绘制一个电压(y 轴)—时间(x 轴)图。图 10 显示了一个图表示例。如果您需要测试某个电子器件是否正常工作,这项功能会很有用。如果您知道移除该器件之后信号的波形会发生什么变化,您就可以利用示波器来查看这个器件是否在输出正确的信号。请注意,x 轴和 y 轴会以网格线分成一些格子。您可以利用这种网格线执行手动测量,但新型示波器能够自动执行大多数的测量,并且得到更精确的结果。示波器的功用不只是绘制电压—时间图。示波器提供多个输入(也称通道),每个通道都能独立工作。因此,您可以将通道 1 连接到某个器件,并将通道 2 连接到另一个器件。随后,示波器可以绘出通道 1 与通道 2 分别测得的电压之间的比较图。该模式称为示波器的 XY 模式,适用于绘制 I-V 图或 Lissajous 图。根据 Lissajous 图的形状可以得知两个信号之间的相位差与频率比。图 11 显示了 Lissajous 图及其代表的相位差/频率比。图 10. 在示波器上显示的方波的电压-时间图图 11.Lissajous 图形示波器的类型模拟示波器第一种是模拟示波器,它使用阴极射线管来显示波形。屏幕上涂有荧光物质,只要被电子束集中就会发光。当连续的荧光点亮起时,您可以看到信号的再现图形。为了使示波器稳定地显示波形,必须使用触发。当显示屏上的整个波形迹线完成时,示波器会等到特定的事件发生后(例如,上升沿超过某个电压值)再次开始显示迹线。未经触发的显示画面是没有用处的,因为它显示的波形并不稳定(同样适用于下面将会讨论的 DSO 和 MSO 示波器)。模拟示波器非常实用,因为荧光点会继续发光一段时间而不会马上消失。您可以在几个彼此重叠的示波器迹线上看到信号的毛刺或不规则性。由于当电子束击中屏幕时便会显示波形,所以显示信号的亮度与实际信号的亮度有关。这使显示屏与三维显示屏类似(换句话说,x 轴代表时间,y 轴代表电压,而 z 轴则代表亮度)。模拟示波器的不足之处是无法使显示画面 “固定”,从而使波形停留较长的时间。当荧光物质不再发光时,该部分的信号也随之消失。此外,您无法自动执行波形测量,必须使用显示屏上的网格线进行手动测量。电子束在进行水平扫描和垂直扫描时存在一个速度上限,这会导致模拟示波器可显示的信号类型也十分有限。尽管模拟示波器目前还拥有不少用户,但其销量大不如前。数字示波器已经成为用户的主流选择。数字存储示波器(DSO)数字存储示波器(通常称为 DSO)是为了弥补模拟示波器的诸多不足而发明的。 DSO 输入一个信号,并通过模数转换器将其数字化。图 12 显示了是德科技数字示波器采用的一种 DSO 体系结构。图 12. 数字示波器的体系结构衰减器会调整波形。垂直放大器会在波形传到模数转换器(ADC)时做进一步的调整。ADC 会对收到的信号进行采样和数字转换,随后将这个数据存入存储器中。触发器会寻找触发事件,而时基会调整示波器的时间显示。在示波器显示信号之前,微处理器系统可以执行您指定的其他后期处理任务。数据以数字形式表示,可使示波器执行各种波形测量。信号可以无限期地存放在存储器中,也可打印或通过闪存、LAN、 USB 或 DVD-RW 传输到计算机中。事实上,您还能通过软件提供的虚拟前面板在计算机上控制和监测示波器。混合信号示波器(MSO)DSO 的输入信号属于模拟信号,通过数模转换器将其数字化。随着数字电路技术的蓬勃发展,同时监测模拟信号与数字信号变得越来越重要。鉴于此,示波器厂商着手生产能够触发和显示模拟与数字信号的混合信号示波器。这类仪器通常具备少数几个模拟通道(2 或 4)和更多的数字通道(参见图 13)。图 13. 混合信号示波器的前面板输入提供了 4 个模拟通道和 8 个数字通道混合信号示波器的优点是可以触发任意组合的模拟与数字信号,并且显示以相同时基进行关联的所有信号。便携式 / 手持式示波器顾名思义,便携式示波器是指外形小巧、利于随身携带的示波器。如果您需要在许多地点或实验室的不同工作台之间移动示波器,那么便携式示波器就是您的最佳选择。图 14 显示了 Keysight InfiniiVision X 系列便携式示波器。便携式示波器的优点是轻便易携带,可快速打开和关闭,易于使用。它们的性能通常不如大型示波器全面,但 Keysight InfiniiVision 2000 和 3000 X 系列扭转了这一劣势。它们不仅具备便携式示波器的便携性与易用性,还拥有足够强大的功能,能够应对目前大多数的调试需求(带宽高达 6 GHz)。图 14.Keysight InfiniiVision 2000 X 系列便携式示波器示波器的类型经济型示波器经济型示波器的价位适中,但其性能逊于高性能示波器。这类示波器常用于大学的实验室中,主要优势就是低价位。您可以适中的价格买到非常实用的示波器。高性能示波器高性能示波器可提供最佳的性能。当用户需要高带宽、快速采样率和更新速率、较大存储器深度以及广泛的测量功能时,通常会选择这种示波器。图 15 显示了 Keysight Infiniium 90000A 系列高性能示波器。图 15.Keysight Infiniium 90000A 系列示波器高性能示波器的主要优势是支持您适当地分析各种信号,提供多种应用软件和工具,使分析现有技术变得简单而快速。它的劣势主要是在它的价格和体积上。示波器的使用范围凡是需要测试或应用电子信号的公司几乎都会用到示波器。因此,示波器的应用范围极为广泛:– 汽车技术人员通过示波器来诊断汽车的电气问题。– 大学实验室使用示波器向学生教授电子知识。– 全球各地的研究组都拥有示波器。– 手机制造商使用示波器来测试信号的完整性。– 军事和航空航天行业使用示波器来测试雷达通信系统。– 研发工程师使用示波器来测试和设计新的技术。– 示波器也可用于一致性测试。例如,用于确保 USB 和 HDMI 的输出符合某些标准。示波器的用途十分广泛,以上只是其中的几种。它的确是一种功能强大的通用仪器。基本的示波器控制与测量基本的前面板控制通常,您必须使用前面板上的旋钮和按键来操作示波器。除了前面板上提供的控制机构以外,许多高端示波器现在还配有操作系统,因此可以像计算机一样来操作。您可以为示波器连接鼠标和键盘,并使用鼠标通过显示屏上的下拉式菜单和按键来调整控制。此外,有些示波器还配有触摸屏,只需通过触笔或指尖就能访问菜单。开始之前 ...当您第一次使用示波器时,请先检查您要使用的输入通道是否已经打开。然后找到并按下 [Default Settings],使示波器恢复到默认状态。接着再按下 [Autoscale] 键,自动设定垂直和水平刻度,以便在显示屏上完美地呈现波形。以此作为起点,然后再做些必要的调整。如果您无法追踪到波形或在显示波形方面出现困难,请重复以上步骤。大部分示波器的前面板都至少包括四个主要区域:垂直和水平控制,触发控制以及输入控制。垂直控制示波器的垂直控制结构通常集中在一个标示为 Vertical 的区域内,这些控制结构可以让您调整显示屏的垂直刻度。例如,其中有一个控制机构可以指定显示屏网格的 y 轴上的每格(刻度)电压。您可以通过降低每格电压来放大显示波形,或提高每格电压来缩小显示波形。另外还有一个控制机构可以调整波形的垂直偏移,它可以让整个波形在显示屏上往上或往下平移。图 16 是Keysight InfiniiVision 2000 X 系列示波器的垂直控制区域。图 16. Keysight InfiniiVision 2000 X 系列示波器前面板上的垂直控制区域水平控制 示波器的水平控制机构通常集中在前面板上标示为 Horizontal 的区域。这些控制机构可以让您调整显示屏的水平刻度。其中有一个控制机构可以指定 x 轴的每格时间。同样,只要减少每格时间,您就可以放大显示较窄时间范围内的波形。另外还有一个控制机构可调整水平延迟(偏置),它可以让您扫描一个时间范围。图 17 是Keysight InfiniiVision 2000 X 系列示波器的水平控制区域。图 17. Keysight InfiniiVision 2000 X 系列示波器前面板上的水平控制区域触发控制 如前所述,在您的信号上进行触发有助于显示一个稳定、可用的波形,并使您可以查看感兴趣的波形部分。触发控制可使您选择垂直触发电平(例如您希望示波器触发时所在的电压)和不同的触发功能。常见的触发类型包括:边沿触发边沿触发是最常见的一种触发模式。当电压越过某个阈值时,触发就会发生。您可以选择在上升沿或下降沿触发。图 18 是在上升沿触发的图形显示。图 18. 当您在上升沿进行触发时,只要达到阈值,示波器就会进行触发毛刺触发在毛刺触发模式下,当事件或脉冲宽度大于或小于指定的时间长度时就会进行触发。这项功能对于发现随机毛刺或错误非常有用。如果这些毛刺不常出现,可能会很难看到,但只要使用毛刺触发您就可以捕获到许多这类错误。图 19 是Keysight InfiniiVision 6000 系列示波器捕获到的一个毛刺。图 19. Keysight InfiniiVision 6000 系列示波器捕获到的一个偶发毛刺。脉冲宽度触发当您寻找特定脉冲宽度时,脉冲宽度触发与毛刺触发类似。但这项触发功能更普遍,因为您可以在任何指定宽度的脉冲上触发,并可选择想要在脉冲的哪个极性(负或正)上触发。您也可以设定触发的水平位置,以观察触发前后所发生的事。例如,您可以执行毛刺触发来找出错误,然后查看触发前的信号以了解造成毛刺的原因。如果将水平延迟设置为 0,则触发事件将会以水平方向出现在屏幕中间。在触发之前发生的事件会出现在屏幕的左边,在触发之后立即发生的事件会出现在右边。您也可以设置触发耦合,以及想要触发的输入信号源。您不一定非得在您的信号上触发,而是还可以在相关的信号上触发。图 20 是示波器前面板的触发控制区域。图 20. Keysight InfiniiVision 2000 X 系列示波器前面板上的触发控制区域输入控制示波器通常提供 2 或 4 个模拟通道。这些通道会加以编号,而且每个通道通常会对应一个相关的按键,供您打开或关闭通道。另外,您也可以选择指定的交流或直流耦合。如果选择直流耦合,则输入整个信号。反之,交流耦合会阻隔直流分量,并将波形的中心设在大约 0 V(接地)。此外,您还可以通过选择键为每个通道指定探头阻抗。您也可以通过输入控制机构选择采样类型。信号的采样有两种基本的方法: 实时采样实时采样会对波形进行频繁的采样,因此在每次采集时都能捕获到完整的波形图像。借助实时采样功能,当前的一些高性能示波器能够单次捕获高达 33-GHz 带宽的信号。等效时间采样等效时间采样必须历经多次采集才能建立波形。它会在第一次采集时采样信号的某个部分,在第二次采集时采样另一部分,依此类推。随后它会将所有的信息结合在一起以重建波形。等效时间采样适用于高频信号,这些信号对实时采样来说速度太快(>33 GHz)。功能键您可以在未配备 Windows 操作系统的示波器上找到一些功能键(如图 8 所示),利用这些功能键来访问示波器显示屏上的菜单系统。图 21 列举了按下功能键时弹出的一种快捷菜单。该菜单用于选择触发模式。您可以连续按动多功能键以切换不同的选项,或者利用前面板上的旋钮转到您想要的选项。图 21. 在触发菜单下,按下功能键时出现的 Trigger Type(触发类型)菜单。示波器的使用数字示波器可以支持您执行广泛的波形测量,测量的复杂程度和范围取决于示波器的功能组合。图 22 是Keysight 8000 系列示波器的空白屏面。请注意,在屏幕的最左边有一排测量按键 / 图标,使用鼠标将这些图标拖曳到波形上,示波器便可计算出测量结果。这些图标非常直观地显示了可以执行哪一种测量计算,因此用起来非常方便。图 22. Keysight 示波器的空白屏面许多示波器都会提供以下的基本测量:峰峰值电压测量这项测量可以计算单个波形周期内的高低电压之间的电压差。图 23. 峰峰值电压电压有效值(RMS 电压)测量这项测量计算波形的 RMS 电压,该值可进一步用来计算功率。图 24. 上升时间示例(显示峰峰值电压从 0% 到 100% 所需的时间,而不是通常设置的 10% 到 90%)上升时间 - 这项测量旨在计算信号从低电压上升到高电压所花的时间。通常是计算波形从峰峰值电压的 10% 变到 90% 所用的时间。上升时间是上限阈值上的时间减去您正在测量的边缘的下阈值上的时间。下降时间相似,即下阈值上的时间减去您正在测量的边缘的上限阈值上的时间。一旦您已采集到信号并将其显示在示波器上,下一步通常是在波形上进行测量。示波器现在具备极其丰富内置测量功能,使您能迅速分析波形。这些基本测量的范例包括:脉宽测量脉宽是从第一个上升沿的中间阈值到下一个下降沿的中间阈值的时间。在进行正脉宽测量时,计算脉冲宽度的方法是,计算波形从峰峰值电压的 50% 上升到最大电压再回落到 50% 所需的时间。负脉宽测量则是计算波形从峰峰值电压的 50% 降到最小电压再回到 50% 所需的时间。幅度和其它电压测量这是波形显示幅度的测量。通常您也可测量峰峰值电压、最大电压、最低电压以及平均电压。周期 / 频率:周期定义为中间阈值两次连续交叉点电压之间的时间。频率定义为 1/周期。以上是许多示波器都会提供的测量项目,但大多数示波器所能执行的测量并不仅限于此。示波器基本运算功能除了前面讨论的测量功能以外,您还可以针对您的波形执行许多数学运算,包括:包括:傅立叶变换 - 通过傅立叶变换可以可知道信号由哪些频率组成。绝对值 - 此项运算功能可以帮助显示波形的绝对值(以电压值表示)。积分 - 这个功能可以计算波形的积分。加减运算 - 您可以利用加减运算将多个波形相加或相减,并示出运算结果所产生的信号。再次强调,以上只是示波器所提供的一小部分测量与运算功能。重要的示波器性能特性示波器的许多特性都会明显影响仪器的性能,进而决定您对设备做出准确测试的能力。本节介绍这些最基本的特性,也会帮助您熟悉示波器的术语,并说明如何明智地挑选最符合您需求的示波器。示波器带宽带宽是示波器的一项最重要特性,因为它表示了示波器在频域内的具体范围。换言之,带宽决定了您能够准确显示与测试的信号范围(以频率表示)。带宽以赫兹为测量单位。没有足够的带宽,您的示波器将无法准确再现真实的信号。例如,您可能会发现信号的幅度是错的、信号边沿并不稳定或有波形细节丢失。示波器带宽是指将信号衰减 3 dB 时的最低频率。我们也可以从另外一个角度来解释带宽:如果您在示波器中输入一个纯正弦波,当显示的幅度达到真实信号幅度的 70.7% 时的最小频率即为带宽。有关示波器带宽的详细信息,请参见应用指南《为您的应用评测示波器带宽》。示波器通道通道是指示波器的独立输入。示波器通道的数量介于 2 到 20 个之间,通常是 2 或 4 个。通道所传送的信号类型也不尽相同。有些示波器只具有模拟通道(这些仪器称为 DSO――数字信号示波器),另一些示波器同时具有模拟通道和数字通道,称为混合信号示波器(MSO)。例如, Keysight InfiniiVision 系列 MSO 提供 20 个通道,其中 16 个是数字通道,4 个是模拟通道。请确保有足够的通道供应用使用。如果您只有两个通道,但必须同时显示 4 个信号,显然会出问题。图 25. Keysight MSO 2000 系列示波器上的模拟和数字通道示波器采样率示波器的采样率是指每秒可采集的样本数量。建议您选择采样率至少比带宽大 2.5 倍的示波器,但采样率最好为带宽的 3 倍以上。在评估示波器制造商所宣传的采样率技术指标时必须要谨慎,厂商通常会列出示波器可达到的最大采样率,但这样的采样率通常只有在使用一个通道的情况下才能达到。如果同时使用多个通道,采样率就会下降。因此,请确认在使用多少个通道的情况下,仍可维持厂商所声称的最大采样率。如果示波器的采样率太低,您在示波器上所看到的信号可能不是很精确。例如,假设您想查看一个波形,但示波器的采样率每个周期只能产生两个数据点(图 26)。图 26. 采样率每个周期产生 2 个数据点的波形现在假设是相同的波形,但是采样率提高为每个周期采样 7 次(图 27)。图 27. 采样率每个周期产生 7 个数据点的波形显然每秒采集的样本越多,显示的波形就越清晰、准确。如果针对以上的例子持续提高波形的采样率,则采样数据点最终看起来几乎是连续的。事实上,示波器会使用 sin(x)/x 内插法来填满采样数据点之间的空间。有关示波器采样率的更多信息,请参见应用指南《评测示波器采样率与采样保真度的关系 -- 如何进行最精确的数字测量》。示波器存储深度如前所述,数字示波器使用 A/D(模拟 /数字)转换器对输入的波形进行数字转换,经数字转换的数据会存储到示波器的高速存储器中。存储深度是指可以存储的采样或数据点的数量,也就是可以存储数据的时间长度。存储深度在示波器的采样率方面扮演着相当重要的角色。在理想条件下,不论示波器如何设置,采样率都应维持不变。但这样的示波器在很大的每格时间(时间 / 格)设置下需要相当大存储器,而其售价将会超出许多客户所能负担的范围。实际上,只要增加时间范围,采样率便会下降。存储器深度至关重要,因为示波器的存储器深度越大,您以全采样速率来采集波形的时间就越久。我们可以用数学算式来表示:存储器深度 =(采样率)(显示屏的时间设置范围)因此,如果想在较长的时间范围内显示高分辨率数据点,那么就需要使用深存储器。确认示波器在最深的存储器深度设置时的性能也很重要。在此模式下示波器的性能通常会急剧下降,因此许多工程师只有在必要的时候才会使用深存储器。有关设备存储器深度的更多信息,请参见应用指南 Demystifying Deep Memory Oscilloscopes。波形捕获率捕获率是指示波器采集和更新波形显示的速率。虽然肉眼上看上去好像示波器正在显示“作用中”的波形,但那是因为更新的速度太快,以致肉眼无法察觉到变化。事实上,每次波形采集之间都会出现一段静寂时间(也称死区时间)(见图 28),此时波形的某个部分并不会显示在示波器上。因此,如果在这段时间出现一些偶发事件或毛刺,您是不会看见的。显而易见,快速的捕获率非常重要。捕获率越快,意味着死区时间越短,可捕获到偶发事件或毛刺的机率就越高。例如,您正在显示的信号中,如果每 50,000 个周期出现一次毛刺,而您的示波器的捕获率是每秒 100,000 个波形,那么平均每秒可以有两次捕获到这个毛刺。但如果示波器的捕获率是每秒 800 个波形,那么平均要花一分钟才能捕获到这个毛刺。这将必须等待较长的时间。在比较不同示波器的更新速率技术指标时必须要小心。有些制造商在广告中所声称的更新速率,其实必须是在特殊的采集模式下才能达到。这些采集模式可能会严重限制示波器的性能,例如存储深度、采样率和波形的重建因此,最好能确认示波器在最大更新速率下显示波形时的性能。示波器连通性 示波器提供了多种连通功能。有些示波器会配备 USB 端口、DVD-RW 光驱、外置硬盘和外部显示器端口等。以上所有的特性都可以帮助您更容易地使用示波器和传输数据。有些示波器还会配备操作系统,让您的示波器像个人计算机一样运行。在连接了外部显示器、鼠标和键盘后,您就可以像把示波器嵌入到电脑中一样来查看示波器的显示画面和进行控制操作。在许多情况下,您也可以通过 USB 或 LAN 连接,将数据从示波器传送到 PC。良好的连通性特性可节省大量宝贵的时间,协助您更轻松地完成工作。例如,您可以迅速而完整地将数据传送到笔记本电脑,或与不同地点的同事分享数据。您也可以通过 PC 对示波器进行远程控制。在很多情况下,用户都需要高效地传输数据,因此购买具备出色连通特性的示波器才是明智的投资。图 28. 静寂时间(死区时间)示意图圆圈指出的偶发事件将不显示示波器探头示波器决定着显示信号和分析信号的准确程度,而用来连接示波器与被测件(DUT)的探头则与信号完整性息息相关。如果您使用的是 1 GHz 的示波器,但探头却只支持 500 MHz 的带宽,那么您将无法充分利用示波器的带宽。本节讨论探头的类型及每种探头所适合的应用。负载没有任何一个探头可以完美地复制您的信号,因为当您把探头连接到电路上时,探头就会变成该电路的一部分。电路中的部分电能会流经探头,我们称之为负载。负载共有三种:电阻、电容和电感。电阻负载电阻负载会造成显示的信号出现错误的幅度,也可能在连接探头时导致故障的电路开始发生作用。探头的电阻最好比信号源电阻大 10 倍以上,以便使幅度降低到 10% 以下。电容负载电容负载会导致上升时间变慢,并使带宽变小。为了减少电容负载,探头的带宽至少应是信号带宽的 5 倍。电感负载电感负载在您的信号中会以振铃形式出现。它是由探头接地导线的电感效应引起的,因此请尽可能选用最短的导线。 无源探头无源探头只包含无源器件,不需要使用电源便可运行。这类探头在探测带宽小于 600 MHz 的信号时很有用,一旦超过这个频率,就需使用另一种探头(有源探头)。无源探头通常价格较低,且兼具易于使用和坚固耐用的特性。它是一种精确的多功能探头。无源探头的种类包括低阻分压探头、补偿探头、高阻分压探头及高电压探头。无源探头通常会产生高电容负载和低电阻负载。图 29. 无源探头有源探头使用有源探头时,必须通过电源对探头内部的有源器件供电。有时,探头会通过 USB 电缆连接、外部机箱或示波器主机供电。这类探头使用有源器件来放大或调整信号。有源探头可支持更高的信号带宽,因此很适合高性能的应用。有源探头的价格要比无源探头高出许多,不但耐用性差,探针也比较重。但这类探头可以提供最佳的电阻和电容负载组合,并可让您测试更高频率的信号。Keysight InfiniiMax 系列探头属于高性能探头。它们在探针中使用一个阻尼电阻器,可以大幅减少负载效应。此外,它们也提供非常高的带宽。图 30. 有源探头电流探头电流探头可用来测量流经电路的电流,它们通常体积较大,且带宽有限(100 MHz)。探头附件与探头相配套的还有各种不同类型的探针,从可以包裹缆线的粗大型探针,到细如发丝的纤细型的探针应有尽有。有了这些探针,您就可以更轻松地接触测试电路或被测件的各个部分。图 31. 电流探头结论在当今的科技领域中,示波器是一种功能强大的工具。它们适用于非常广泛的应用,并且较之于其他的测试与测量工具拥有许多优点。阅读了本应用指南之后,您应该已对示波器原理有了较为清晰的认识。如能再接再厉,阅读一些更高级的专题文章,相信您在以后使用示波器时会更加得心应手。有关是德科技示波器的更多信息,请访问示波器编辑于 2024-01-22 19:49・IP 属地马来西亚示波器仪器仪表是德科技(中国)有限公司Keysight​赞同 165​​6 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录示波器使用方法介绍是德科技(原安捷伦)示波器的使用方法和步骤示波器基

在电子工程中,示波器的工作原理是什么? - 知乎

在电子工程中,示波器的工作原理是什么? - 知乎首页知乎知学堂发现等你来答​切换模式登录/注册工程学示波器测量仪器仪器仪表在电子工程中,示波器的工作原理是什么?关注者2被浏览7,307关注问题​写回答​邀请回答​好问题 1​添加评论​分享​4 个回答默认排序是德科技 Keysight Technologies​已认证账号​ 关注示波器工作原理DSO 示波器块示意图所有数字存储示波器 (DSO) 的核心元件都是示波器的模数转换器 (ADC) 和采集存储器。这是示波器用来获取波形图形的最根本组件。ADC 获取模拟输入信号,然后将特定时间点的模拟电压值转换为数字二进制值。在如今的大多数 DSO 中,这通常是采用 8 位垂直分辨率完成的。也就是说,通常 DSO 能以 1/256 的分辨率来分辨输入信号的电压值。“衰减器”、“直流偏移”和“放大器”块执行输入信号的预刻度调整,以便将输入信号的刻度调整到 ADC 的固定动态范围内。当您调整 V/div 旋钮时,将在衰减器块内设置特定分压器网络,这可能会降低输入信号的幅度,还可设置放大器的增益。调整垂直位置旋钮时,将更改直流偏移。同样,这将使可能具有一定直流偏移量的输入信号位于 ADC 的固定动态范围内。触发和时基块控制 ADC 采样(获取图形)的时间和频率。触发信号实际上告诉时基块何时停止采集(图形)。例如,如果示波器的存储器深度为 1000 点(每次采集的采样数),并且如果示波器已设置为在屏幕正中触发,则时基块将启用 ADC/存储器块,连续采样输入或命令至少填充存储器的一半。触发事件发生后,时基块允许 ADC/存储器块在采样结束前再多进行 500 次采样。在此情况下,采集存储器中的头 500 次采样表示触发事件之前的波形数据,而采集存储器中的后 500 次采样触发事件之后的波形数据。采集周期结束后,必须对存储在采集存储器中的采样进行处理以进行显示。早期的 DSO 只是使用示波器的 CPU 系统将数据从采集存储器中读出(每次一个采样)、处理数据,然后再将采样数据存储到显示存储器中。这是一个非常耗时的过程,有时会导致波形更新率较慢 – 尤其是在处理较深的存储器记录时。如今的许多新型 DSO 都使用专用的可定制 DSP 来快速处理/数字式过滤数据,然后高效地将波形数据以“流水线”的方式输入显示存储器,因而提高了吞吐量和波形更新率。特別介紹一下数字实时示波器的核心-采样系统和模数转换器ADC采样系统本身与示波器并不是必然关联,因为模拟示波器并不存在采样电路。但是水平采样系统和数字示波器必然关联,无论是实时示波器还是采样示波器。尤其是在数字实时示波器领域,ADC芯片及采样电路相关技术已经成为核心技术。1 奈奎斯特采样定理和数字示波器的采样系统性能谈及采样技术无法绕开的是的奈奎斯特采样定理。奈奎斯特采样定理For a limited bandwidth signal with a maximum frequency fMAX, the equally spaced sampling frequency fS must be greater than twice the maximum frequency fMAX, in order to have the signal be uniquely reconstructed without aliasing.直译如下:对一最大频率fMAX的有限带宽信号,相等间隔的采样频率fS必须大于最大频率fMAX的两倍,以便唯一地重构信号而不会出现混叠。根据上述表述,解读奈奎斯特采样定理有两大原则:1.被采样的最高频率分量必须小于采样速率的一半;2.第二个经常被遗忘的规则是,采样样本必须等间隔。01 根据奈奎斯特采样定理,一般在中高带宽产品上采用平坦响应的实时示波器,带外分量基本被滤除,因此基于Sinx/x插值技术,兼顾经济性和性能考虑,业界通行的法则是采样速率是带宽的2.5倍,比奈奎斯特定理的2倍要求再高点。而针对采用高斯响应的低带宽示波器,则一般要求采样率是带宽的4倍以上,以免带外信号混叠。业界也有一些产品基于线性插值技术,则一般采用10倍法则即采样速率必须是带宽的10倍。因此比如50 GSa/s的采样能力,支持20 GHz带宽完全正常,但是如果标称支持到23 GHz带宽则有点勉强,其信号采样重构失真必然较大,当然也无法保证测量精度。在上一站的介绍文章中,我们用实验数据验证了实时示波器的平坦响应的特性,因此对应最高带宽6 GHz,按照2.5倍法则,需要15 GSa/s以上采样率。MXR全系列每通道均提供了16 GSa/s采样,完全满足带宽和采样两者的关系和要求。下图展示了MXR608A进行6GHz正弦波测试的结果图片,信号由Keysight E8267D输出:图2 实时示波器6GHz型号精确测试6GHz正弦波结果图02 而另外一条采样等间距原则,则常常被广大工程师朋友所忽视。尤其是在今天很多中高带宽产品上,为了实现高采样率,都会采用 Interleave Sampling 技术,如下图示:图3 Interleave Sampling架构原理图采用多路ADC进行交错采样时,采样时钟精度和相位延迟控制精度都是影响采样等间隔的重要干扰因素。而采样时钟精度反映在示波器的水平系统的重要指标就是水平刻度精度(Time Scale Accuracy)或者水平时基精度(Time Base Accuracy)。实时示波器示波器提供了业界最高的标配的水平时基精度,初始水平时基精度高达8ppb(ppb:Part per Billion,亿分之一):图4 实时示波器水平时基精度指标这一指标远远高于业界其它同级别产品的100ppb水平,老化指标也相当优异。MXR的卓异的水平时基精度是采样等间隔的有力保证,也是多年来业界为什么对Keysight (及前身Agilent) 的数字示波器的测量精度有口皆碑的根本原因。2 ADC的位数和示波器的ENOB-实时示波器的另一重要指标反映数字实时示波器的另一重要指标是采样ADC的位数,这是非常直观的指标。01 ADC作为数字示波器的核心部件,是提高示波器测量精度或信号保真度的最重要的一环。在90年代中期,数字示波器的ADC就从初期的6bit提高到8bit,一直沿用了近20年,因为8bit ADC符合从90年代开始的以TTL/CMOS电平为主流的数字信号标准和应用。近几年随着市场对无限带宽需求带来的信号速率增长和在终端和IOT设备上对低能耗的的追求,由此带来信号幅度和容限持续降低。反映在测试测量设备上,一直在推动数字实时示波器的ADC位数取得了明显的提升。标志性产品是Keysight在2014年推出的S系列最高带宽8GHz 10bit示波器以及2018年推出的带宽高达110 GHz的10bit 的UXR超高端示波器。图5 持续推高的信号速率和降低的信号幅度与容限02 ADC 比特数与示波器的垂直分辨率成正比理论上讲,10位ADC示波器的分辨率比8位ADC示波器高4倍。而事实上反映在示波器上的最终指标则是ENOB,Effective Number of Bits,中文叫动态有效位。ENOB不仅和基础的ADC位数有关,还和示波器的本底噪声和水平插值误差或者采样精度有关。因此理论的ADC位数不能直接换算成示波器的最终ENOB,也就是说评估示波器的垂直分辨率更为有价值的指标是系统ENOB。因此如果您在评估示波器时应当要求厂家明确给出其产品带宽范围内在不同频点下的ENOB。客观上,由于示波器的本底噪声呈高斯随机分布,带宽越大,噪声越大,因此在高频点实时示波器的ENOB可能由于本底噪声的缘故牺牲很多。这也是为什么在高带宽示波器上必须采用更高ADC位数的原因。近几年来超高速串行信号和高阶调制信号的发展对更高带宽示波器的ADC位数提出了很苛刻的要求,当然Keysight已经用UXR系列10bit超高端示波器交出了完美的答卷。谈及ENOB则必须谈及针对ADC芯片的最常用评估参数——SINAD(Signal-to-Noise-and-Distortion Ratio),是信号幅度均方根与所有其他频谱分量(包括谐波,但不包括DC)的均方根(RSS)平均值之比。除非另有说明,否则SINAD一般都使用正弦波输入信号进行测量。基于不同频率下的SINAD值,可以得到ADC或者示波器不同频点下的ENOB:图 6 ENOB与SINAD换算公式如何正确测试示波器的ENOB呢?沿袭自SINAD测量,用固定幅度的正弦波对示波器的通道进行扫频,测量示波器上的电压结果。然后使用后处理工具(例如MathWorks MATLAB)进行计算,无论在时域和频域都可以。基于时域方法,通过从测量所得结果中减去对应时间的理论最佳拟合电压。差值来源主要是噪声,这可能来自示波器的前端,一般由诸如相位非线性和扫频信号的幅度变化等。噪声也可能来自于ADC的间插采样失真。基于频域方法,则通过从整个宽带功率中减去与主频分量相关的功率来计算ENOB。基本步骤如下:1) 输入一个精准的RF正弦波到给定的通道,信号频率在带宽之内;2) 注意正弦波的Vpp保持不变,因为这非常重要,每个步骤都使用相同幅度的信号输入;3) 将捕获的波形文件加载到MathWorks中,并计算数据的均方误差;4) 以不同的正弦波频率重复步骤1至3,确保每个步骤的 Vpp都相同。(这是一个关键步骤,同时保持同一Vpp幅度,以免Vpp的变化导致更高或更低 ENOB)可见,采用精准正弦波扫频到示波器额定带宽频点进行测量是正确表征示波器ENOB的基础。业界有的产品给出的ENOB测量条件为10 MHz正弦波在示波器不同带宽下的值,显然没有完全准确表征,因为其输入的10 MHz正弦波在示波器不同带宽下没有任何幅度变化,主要计入的只是不同带宽下的示波器垂直本底噪声影响。03 除了常常提到的示波器中所用 ADC位数及系统 ENOB,今天在很多产品中还经常提到采用 Hi-Res Mode 时,示波器 ADC分辨率最高可以达到 16bit。Hi-Res 模式是示波器采集系统中常用的一种采集模式,主要是针对低频信号在无需高采样率情况下通过对若干原始采样点进行平均滤波(副作用是会降低带宽,因此只能针对低频信号测试用)得到的值作为样本来重构波形。图 7 Hi-Res采集模式原理架构在采用Hi-Res采集模式后,一般示波器带宽都会最低限制到20MHz左右,标称的ADC位数可以达到15/16 bit,最终可以实现的ENOB,不同公司的产品最终水平则略有差异。Keysight 实时示波器 继承了上一代S示波器的优异的模拟前端设计,以及最新的实时示波器全新采集系统,采用硬件10bit ADC,所有通道在最高6GHz带宽和所有采样率下均可达到硬件10bit,是业界唯一“全天候”产品。采用Hi-Res模式下,最高可实现16bit ADC。图8 MXR系列ADC分辨率,采样率与带宽关系基于业界(ADC芯片公司)认可的最标准的ENOB测试方法标定,MXR具有业界优异的ENOB指标:图 9 MXR不同频点下ENOB示波器使用小技巧从使用角度来看,日常在使用示波器的时候,强烈推荐调节示波器垂直刻度到信号展开达到满屏的 90% 左右, 因为这时的垂直刻度为最优值,除以 ADC量化等级比如1024,量化误差为最优。比如一个典型的400mV信号(USB2.0),设置示波器垂直刻度为 60mV/Div,全量程为480mV,在1024量化等级下,最小量化噪声为0.47mV左右。而如果设置垂直刻度为100mV/Div,全量程800mV,在1024量化等级下,最小量化噪声为 0.78mV,显然后一个刻度设置的测量精度要低。这个垂直刻度的不同设置其实背后反映的本质是在不同设置下示波器的ENOB 的差异。特别在采用两根电缆接入信号进行差分运算时,必须先分别对两个单端信号调节到最佳刻度,再进行差分运算。当然很多时候,示波器垂直刻度的设置不仅与示波器本身有关系,在采用探头探测信号时,也会和探头的衰减倍数有关系,示波器的最小可设置垂直刻度=外接探头衰减倍数*示波器本身的最小刻度。3 采样存储系统除了上面两节描述的对实时示波器至关重要的采样率和 ADC 外,与水平采样系统直接关联的还有示波器的存储深度。示波器的存储深度直接决定了实际工作中能够捕获的波形时长:捕获时长=存储深度 ÷ 采样率根据上面的公式,如果您想捕获更长时间的波形,有两种办法:降低采样率,但是采样率降低的同时也在降低数字带宽(奈奎斯特带宽)的风险,最终导致信号混叠,信号失真;另外一种办法就是增大存储深度,当然增大存储深度需要额外的成本。需要特别说明的是,示波器的采样存储器不同于其内部主板及操作系统里的内存。示波器的采样存储技术除了数据存储器本身外,最重要的在于对ADC采样后的数据进行缓存,预处理,乃至包括硬件滤波等等。MXR系列采用了一个100 M门FPGA进行专门的数据缓存和处理,框图如下:图10 实时示波器采集系统框图那么长存储有哪些典型应用场景呢?比如(不限于):1) 捕获更长时间的波形进行协议分析,在不能确定问题发生原因以明确设置触发条件时;2) 捕获长时间的波形进行抖动和相噪分析,可以分析到低频抖动分量和更精确的相噪分析结果;3) 在对波形做时域到频域转换分析时,长存储波形可以提供更高的解析带宽或频域分辨率4) 针对当前热门的 mmW 和 5G 及雷达数字接收机相关应用,更长的存储深度确保高采样率下的更长捕获时长可以带来更高的 EVM 精度!实时示波器系列最新产品在所有型号上均提供了业界当前主流中端产品上最深的存储深度,标配200 M点每通道,可以升级扩展到400M点每通道,是业界其它产品的标配存储深度 的2-3倍,而其它产品需要通过增加扩展存储选件以达到与MXR同一水平。4 小结今天,我们主要就数字实时示波器的水平采样系统和ADC相关指标和参数及存储深度等做了一些介绍,我们将会介绍的垂直系统性能和指标介绍,这两方面正是为什么 Keysight 示波器始终提供了最精确测量结果的原因,也是为什么 Keysight 示波器广为业界推崇的原因。希望能对您在选择或购买示波器时能有一些更全面的了解和认识。随着全新MXR系列实时示波器发布,Keysight 10bit ADC示波器家族再添新成员,三大系列,S,MXR及UXR系列,带宽全面覆盖从500MHz直到业界唯一的110GHz超高端产品,还提供了丰富的通道数选择,为业界各位工程师提供最广阔选择和最高的测量精度。图11 Keysight全系列 10bit 实时示波器示波器性能规格“带宽”是最重要的示波器规格示波器有很多种规格,但示波器最重要的规格是带宽。示波器能捕获的最高输入频率和准确测量都基于示波器的带宽规格。但示波器无法对具有与带宽频率相同的频率的信号进行准确测量。所有示波器都具有低通频率响应 – 通常称为高斯响应。高斯频率响应近似于单极点低通滤波器。当输入信号频率增加时,示波器将开始衰减输入信号,然后开始进行不准确测量。正弦波输入信号按 3 dB 衰减时的频率就是示波器的带宽。根据 20 Log(Vo/Vi) 公式,3 dB 衰减大约等于 30% 的衰减。选择合适的示波器带宽输入 = 100-MHz 数字时钟使用 100-MHz 带宽示波器的响应使用 500-MHz 带宽示波器的响应模拟应用所需带宽:≥ 最高正弦波频率的 3 倍。数字应用所需带宽:≥ 最高数字时钟频率的 5 倍。更为准确的带宽确定基于信号边沿速度(请参考演示结尾部分的“带宽”应用注释)由于输入正弦波按示波器带宽频率的 30% 左右 (-3 dB) 衰减,因此绝不应使用特定带宽示波器来测试具有相同频率的信号。对于纯模拟/RF 测量应用(正弦波),建议示波器带宽比要测量的最高输入正弦波频率高出三倍。在示波器带宽的 1/3 处,信号通常衰减最小。在今天实际上较为常见的数字应用中,示波器的带宽应至少比系统最高时钟频率高出 5 倍。回想一下某些电子工程课程,所有信号 – 包括数字时钟信号 – 都由多个正弦波组成。如果示波器带宽比最高时钟频率至少高五倍,则示波器便能够捕获衰减最小的第五谐波。本幻灯片展示了捕获同一 100 MHz 数字时钟信号的两种不同带宽示波器。左侧屏幕截图展示了使用 100 MHz 带宽示波器进行捕获时,100 MHz 数字时钟的波形。此信号的较高谐波均已衰减,以至于所有实际保留的部分只是此时钟信号(100 MHz 正弦波)的基本频率分量。右侧屏幕截图展示了使用 500 MHz 带宽示波器进行捕获时,同一 100 MHz 时钟信号的波形。500 MHz 带宽示波器不仅能捕获 100 MHz 基本频率分量,还能较为准确地捕获第三和第五谐波。请注意,数字应用的 5 倍系数实际上只是“单凭经验”的建议。实际上还有一种更为准确的确定合适带宽的方法,这种方法基于高速边沿的实际频率分量,而与时钟频率无关。如果有兴趣了解这种更为准确的方法,请参考本演示结尾部分列出的应用说明“评估应用的示波器带宽”。觀看視頻,了解示波器三大关键指标示波器三大关键指标:模数转换器ADC,系统有效位数ENOB和底噪示波器三大关键指标https://www.zhihu.com/video/1701199841924026368其他重要示波器规格尽管带宽是最重要的示波器规格,但在选择和购买示波器时,还应考虑其他一些规格。其中包括:−采样率(采样数/秒)– 应至少为示波器带宽的 4 倍−存储器深度 – 确定在使用示波器最高采样率进行采样时,能够捕获的最长波形。−通道数 – 通常为 2 或 4 通道。MSO 型号添加了分辨率为 1 位的 8 到 32 个数字采集通道(高或低)。−波形更新率 – 较快的更新率会增加捕获罕见电路问题的可能性。较快的更新率表示有较快的图形采集,这将提高示波器捕获罕见事件的(如毛刺)的可能性。−显示质量 – 大小、分辨率、亮度级数。包括显示屏大小、分辨率和亮度级数。在查看和凭直觉判断随机噪声和抖动时,亮度级别是示波器显示质量的重要特性。−高级触发模式 – 时间限定的脉冲宽度、样式、视频、串行、脉冲冲突(边沿速度、设置/保留时间、矮小脉冲)等。使示波器可以同步较为复杂的信号,如串行总线信号。是德科技编辑于 2023-11-05 21:30​赞同 7​​添加评论​分享​收藏​喜欢收起​行行查行业研究数据库​ 关注小编整理了以下内容,希望可以帮到你(数据来源:行行查 | 行业研究数据库):示波器示波器是一种用途广泛、易于使用且功能强大的电子测量仪器,属于信号分析类仪器的一种,用于观测、分析和记录各种电信号的变化。示波器通过把被测电压随时间的变化关系转换为可视的波形图像,提供直观的研究各种电信号变化的方式。按照信号处理方式不同分类,示波器可分为模拟示波器和数字示波器两大类。模拟示波器是直接将被测电信号呈现在显示设备上,被测电信号通过控制从左到右扫过示波管的电子束在垂直方向的偏转来直接描绘出电压波形。数字示波器则是通过模数转换器(ADC)把被测电信号转换为数字信号,再以数字信号处理的方式将信号随时间的变化波形绘制在显示设备上。示波器的核心参数主要包括带宽、实时采样率、存储深度。•带宽:模拟带宽由放大器决定。其物理意义为在输入端的正弦波衰减幅度为70.7%时(半功率,即-3dB)的频率点。带宽是数值示波器的核心指标,带宽决定了示波器能检测到信号的频率范围,往往决定其价格水平。•实时采样率:由ADC决定。指的是ADC单位时间间隔内可以采样的样点数量,采样点数越多,波形越接近真实值,使用过程中还会受存储深度的影响,采样频率单位一般代表机器的上限,使用过程可以动态调整。•存储深度:由内存控制器和存储器决定。反应示波器内存区域的容量,即可以存储点的个数,是固定值。物理关系为采集时间=存储深度/采样频率。数字示波器的核心性能指标主要为带宽,带宽决定了示波器所能检测到的信号频率范围,最高带宽越高,能够检测的最高信号频率越高。而实时采样率与带宽密切相关,其决定了示波器ADC在单位时间间隔内可采集的样本点数,直接影响信号波形的还原程度,实时采样率越高,采样速度越快,失真越小。最高带宽和实时采样率越高,其技术难度越高,应用领域越丰富,产品价格也越昂贵。因此,数字示波器档次划分需同时满足所属系列的最高带宽核心指标和采样率重要指标的要求。可点击下方行行查链接查看 报告全文欢迎评论、点赞、收藏和转发! 有任何喜欢的行业和话题也可以私信我们。发布于 2023-02-13 11:49​赞同​​添加评论​分享​收藏​喜欢收起​​

百度百科-验证

百度百科-验证

示波器的原理和使用方法 - 知乎

示波器的原理和使用方法 - 知乎切换模式写文章登录/注册示波器的原理和使用方法泰勤科技致力于测试测量领域的综合服务商在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用 表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本 章从使用的角度介绍一下示波器的原理和使用方法。1、示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中 的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。1.1、示波管阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。图1示波管的内部结构和供电图示1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余 辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用 短余辉,低频示波器选用长余辉。由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很 细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作 用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴 极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与 阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。电子束从 阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、 A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调 节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。3.偏转系统偏转系统控制电子射线方向,使荧 光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板 在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。4.示波管的电源为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴 极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前 加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。1.2示波器的基本组成从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变 化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。图2示波器基本组成框图被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足 够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负) 极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏 之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系 统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。2、示波器使用本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。2.1荧光屏荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向 分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交 流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。2.2示波管和电源系统1.电源(Power)示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。2.辉度(Intensity)旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。3.聚焦(Focus)聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。4.标尺亮度(Illuminance)此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。2.3垂直偏转因数和水平偏转因数1.垂直偏转因数选择(VOLTS/DIV)和微调在 单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电 压读数的方便,有时也把偏转因数当灵敏度。踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时 针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被 拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是 0.2V/DIV。在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。2.时基选择(TIME/DIV)和微调时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔 出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的 时间值等于2μS×(1/10)=0.2μSTDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。2.4输入通道和输入耦合选择1.输入通道选择输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅 显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选 择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1” 位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器, 从荧光屏上读出的电压值乘以10才是信号的实际电压值。2.输入耦合方式输入耦合方式有三种选择:交流(AC)、地(GND)、 直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含 有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。2.5触发第一节指出,被测信号从 Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生 重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接 影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。1.触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。2.触发耦合(Coupling)方式选择触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。低 频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电 路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。3.触发电平(Level)和触发极性(Slope)触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时 针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产 生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同 步。极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。2.6扫描方式(SweepMode)扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的, 真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。数字示波器使用必须注意问题前言数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。区分模拟带宽和数字实时带宽带宽是最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随 机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一 般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声 称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指 其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会 给测量带来意想不到的误差。有关采样速率采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。1.如果采样速率不够,容易出现混迭现象如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现 象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于 一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是, 说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不 会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生:·调整扫速;·采用自动设置(Autoset);·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。·如果示波器有InstaVu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。2.采样速率与t/div的关系每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出:fs=N/(t/div)N为每格采样点当采样点数N为一定值时,fs与t/div成反比,扫速越大,采样速率越低。下面是TDS520B的一组扫速与采样速率的数据:表1扫速与采样速率t/div(ns)1252550100200fs(GS/s)502510210.50.25综上所述,使用数字示波器时,为了避免混迭,扫速档最好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则最好置于主扫速较慢的位置。数字示波器的上升时间在模拟示波器中,上升时间是的一项极其重要的指标。而在数字示波器中,上升时间甚至都不作为指标明确给出。由于数字示波器测量方法的原因,以致于自动 测量出的上升时间不仅与采样点的位置相关,如图2中a表示上升沿恰好落在两采样点中间,这时上升时间为数字化间隔的0.8倍。图2中的b的上升沿的中部有 一采样点,则同样的波形,上升时间为数字化间隔的1.6倍。另外,上升时间还与扫速有关,下面是TDS520B测量同一波形时的一组扫速与上升时间的数 据:表2扫速与上升时间t/div(ms)502010521tr(μs)800320160803216由上面这组数据可以看 出,虽然波形的上升时间是一个定值,而用数字示波器测量出来的结果却因为扫速不同而相差甚远。模拟示波器的上升时间与扫速无关,而数字示波器的上升时间不 仅与扫速有关,还与采样点的位置有关,使用数字示波器时,我们不能象用模拟示波器那样,根据测出的时间来反推出信号的上升时间。广东泰测电子有限公司(简称:广东泰测)成立于2021年,是深圳市泰勤科技有限公司的子公司,公司立身于测试测量仪器行、工业与制造行业,与多家国内外业界著名仪器厂商有着长远而稳固的战略合作关系,公司成立至今,紧跟世界工业与制造业发展趋势,为广大的客户提供了多元化的服务,产品用于研发、生产、测试、检测、高校实验室等,涉及领域有: 5G、人工智能、新基建、智能制造、智慧城市、光伏、新能源、电源、电池、半导体、储能等引领未来科技的新行业,在多个领域提供了具有竞争力的综合性测试服务和解决方案,满足客户各类需求。主营:数字示波器、探头、交直流电源、交直流电子负载、万用表、数据采集器、功率分析仪、信号发生器、热像仪、示波记录仪、安规测试仪等产品代理品牌:RIGOL普源精电,ITECH艾德克斯,CYBERTK知用电子,EEC华仪,FLUKE福禄克,KHC北京科环,Tektronix泰克,KEITHLEY吉时利,KEYSIGHT是德科技,HIOKL日置等品牌厂家编辑于 2022-04-15 14:28数字系统设计数字信号示波器​赞同 13​​添加评论​分享​喜欢​收藏​申请

示波器的原理和使用方法 - 知乎

示波器的原理和使用方法 - 知乎切换模式写文章登录/注册示波器的原理和使用方法泰勤科技致力于测试测量领域的综合服务商在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用 表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本 章从使用的角度介绍一下示波器的原理和使用方法。1、示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中 的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。1.1、示波管阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。图1示波管的内部结构和供电图示1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余 辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用 短余辉,低频示波器选用长余辉。由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很 细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作 用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴 极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与 阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。电子束从 阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、 A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调 节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。3.偏转系统偏转系统控制电子射线方向,使荧 光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板 在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。4.示波管的电源为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴 极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前 加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。1.2示波器的基本组成从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变 化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信 号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。图2示波器基本组成框图被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足 够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负) 极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏 之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系 统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。2、示波器使用本节介绍示波器的使用方法。示波器种类、型号很多,功能也不同。数字电路实验中使用较多的是20MHz或者40MHz的双踪示波器。这些示波器用法大同小异。本节不针对某一型号的示波器,只是从概念上介绍示波器在数字电路实验中的常用功能。2.1荧光屏荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。水平方向指示时间,垂直方向指示电压。水平方向 分为10格,垂直方向分为8格,每格又分为5份。垂直方向标有0%,10%,90%,100%等标志,水平方向标有10%,90%标志,供测直流电平、交 流信号幅度、延迟时间等参数使用。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。2.2示波管和电源系统1.电源(Power)示波器主电源开关。当此开关按下时,电源指示灯亮,表示电源接通。2.辉度(Intensity)旋转此旋钮能改变光点和扫描线的亮度。观察低频信号时可小些,高频信号时大些。一般不应太亮,以保护荧光屏。3.聚焦(Focus)聚焦旋钮调节电子束截面大小,将扫描线聚焦成最清晰状态。4.标尺亮度(Illuminance)此旋钮调节荧光屏后面的照明灯亮度。正常室内光线下,照明灯暗一些好。室内光线不足的环境中,可适当调亮照明灯。2.3垂直偏转因数和水平偏转因数1.垂直偏转因数选择(VOLTS/DIV)和微调在 单位输入信号作用下,光点在屏幕上偏移的距离称为偏移灵敏度,这一定义对X轴和Y轴都适用。灵敏度的倒数称为偏转因数。垂直灵敏度的单位是为 cm/V,cm/mV或者DIV/mV,DIV/V,垂直偏转因数的单位是V/cm,mV/cm或者V/DIV,mV/DIV。实际上因习惯用法和测量电 压读数的方便,有时也把偏转因数当灵敏度。踪示波器中每个通道各有一个垂直偏转因数选择波段开关。一般按1,2,5方式从5mV/DIV到5V/DIV分为10档。波段开关指示的值代表荧光屏上垂直方向一格的电压值。例如波段开关置于1V/DIV档时,如果屏幕上信号光点移动一格,则代表输入信号电压变化1V。每个波段开关上往往还有一个小旋钮,微调每档垂直偏转因数。将它沿顺时针方向旋到底,处于“校准”位置,此时垂直偏转因数值与波段开关所指示的值一致。逆时 针旋转此旋钮,能够微调垂直偏转因数。垂直偏转因数微调后,会造成与波段开关的指示值不一致,这点应引起注意。许多示波器具有垂直扩展功能,当微调旋钮被 拉出时,垂直灵敏度扩大若干倍(偏转因数缩小若干倍)。例如,如果波段开关指示的偏转因数是1V/DIV,采用×5扩展状态时,垂直偏转因数是 0.2V/DIV。在做数字电路实验时,在屏幕上被测信号的垂直移动距离与+5V信号的垂直移动距离之比常被用于判断被测信号的电压值。2.时基选择(TIME/DIV)和微调时基选择和微调的使用方法与垂直偏转因数选择和微调类似。时基选择也通过一个波段开关实现,按1、2、5方式把时基分为若干档。波段开关的指示值代表光点在水平方向移动一个格的时间值。例如在1μS/DIV档,光点在屏上移动一格代表时间值1μS。“微调”旋钮用于时基校准和微调。沿顺时针方向旋到底处于校准位置时,屏幕上显示的时基值与波段开关所示的标称值一致。逆时针旋转旋钮,则对时基微调。旋钮拔 出后处于扫描扩展状态。通常为×10扩展,即水平灵敏度扩大10倍,时基缩小到1/10。例如在2μS/DIV档,扫描扩展状态下荧光屏上水平一格代表的 时间值等于2μS×(1/10)=0.2μSTDS实验台上有10MHz、1MHz、500kHz、100kHz的时钟信号,由石英晶体振荡器和分频器产生,准确度很高,可用来校准示波器的时基。示波器的标准信号源CAL,专门用于校准示波器的时基和垂直偏转因数。例如COS5041型示波器标准信号源提供一个VP-P=2V,f=1kHz的方波信号。示波器前面板上的位移(Position)旋钮调节信号波形在荧光屏上的位置。旋转水平位移旋钮(标有水平双向箭头)左右移动信号波形,旋转垂直位移旋钮(标有垂直双向箭头)上下移动信号波形。2.4输入通道和输入耦合选择1.输入通道选择输入通道至少有三种选择方式:通道1(CH1)、通道2(CH2)、双通道(DUAL)。选择通道1时,示波器仅显示通道1的信号。选择通道2时,示波器仅 显示通道2的信号。选择双通道时,示波器同时显示通道1信号和通道2信号。测试信号时,首先要将示波器的地与被测电路的地连接在一起。根据输入通道的选 择,将示波器探头插到相应通道插座上,示波器探头上的地与被测电路的地连接在一起,示波器探头接触被测点。示波器探头上有一双位开关。此开关拨到“×1” 位置时,被测信号无衰减送到示波器,从荧光屏上读出的电压值是信号的实际电压值。此开关拨到“×10"位置时,被测信号衰减为1/10,然后送往示波器, 从荧光屏上读出的电压值乘以10才是信号的实际电压值。2.输入耦合方式输入耦合方式有三种选择:交流(AC)、地(GND)、 直流(DC)。当选择“地”时,扫描线显示出“示波器地”在荧光屏上的位置。直流耦合用于测定信号直流绝对值和观测极低频信号。交流耦合用于观测交流和含 有直流成分的交流信号。在数字电路实验中,一般选择“直流”方式,以便观测信号的绝对电压值。2.5触发第一节指出,被测信号从 Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生 重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接 影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。1.触发源(Source)选择要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发信号由何处供给。通常有三种触发源:内触发(INT)、电源触发(LINE)、外触发EXT)。内触发使用被测信号作为触发信号,是经常使用的一种触发方式。由于触发信号本身是被测信号的一部分,在屏幕上可以显示出非常稳定的波形。双踪示波器中通道1或者通道2都可以选作触发信号。电源触发使用交流电源频率信号作为触发信号。这种方法在测量与交流电源频率有关的信号时是有效的。特别在测量音频电路、闸流管的低电平交流噪音时更为有效。外触发使用外加信号作为触发信号,外加信号从外触发输入端输入。外触发信号与被测信号间应具有周期性的关系。由于被测信号没有用作触发信号,所以何时开始扫描与被测信号无关。正确选择触发信号对波形显示的稳定、清晰有很大关系。例如在数字电路的测量中,对一个简单的周期信号而言,选择内触发可能好一些,而对于一个具有复杂周期的信号,且存在一个与它有周期关系的信号时,选用外触发可能更好。2.触发耦合(Coupling)方式选择触发信号到触发电路的耦合方式有多种,目的是为了触发信号的稳定、可靠。这里介绍常用的几种。AC耦合又称电容耦合。它只允许用触发信号的交流分量触发,触发信号的直流分量被隔断。通常在不考虑DC分量时使用这种耦合方式,以形成稳定触发。但是如果触发信号的频率小于10Hz,会造成触发困难。直流耦合(DC)不隔断触发信号的直流分量。当触发信号的频率较低或者触发信号的占空比很大时,使用直流耦合较好。低 频抑制(LFR)触发时触发信号经过高通滤波器加到触发电路,触发信号的低频成分被抑制;高频抑制(HFR)触发时,触发信号通过低通滤波器加到触发电 路,触发信号的高频成分被抑制。此外还有用于电视维修的电视同步(TV)触发。这些触发耦合方式各有自己的适用范围,需在使用中去体会。3.触发电平(Level)和触发极性(Slope)触发电平调节又叫同步调节,它使得扫描与被测信号同步。电平调节旋钮调节触发信号的触发电平。一旦触发信号超过由旋钮设定的触发电平时,扫描即被触发。顺时 针旋转旋钮,触发电平上升;逆时针旋转旋钮,触发电平下降。当电平旋钮调到电平锁定位置时,触发电平自动保持在触发信号的幅度之内,不需要电平调节就能产 生一个稳定的触发。当信号波形复杂,用电平旋钮不能稳定触发时,用释抑(HoldOff)旋钮调节波形的释抑时间(扫描暂停时间),能使扫描与波形稳定同 步。极性开关用来选择触发信号的极性。拨在“+”位置上时,在信号增加的方向上,当触发信号超过触发电平时就产生触发。拨在“-”位置上时,在信号减少的方向上,当触发信号超过触发电平时就产生触发。触发极性和触发电平共同决定触发信号的触发点。2.6扫描方式(SweepMode)扫描有自动(Auto)、常态(Norm)和单次(Single)三种扫描方式。自动:当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。常态:当无触发信号输入时,扫描处于准备状态,没有扫描线。触发信号到来后,触发扫描。单次:单次按钮类似复位开关。单次扫描方式下,按单次按钮时扫描电路复位,此时准备好(Ready)灯亮。触发信号到来后产生一次扫描。单次扫描结束后,准备灯灭。单次扫描用于观测非周期信号或者单次瞬变信号,往往需要对波形拍照。上面扼要介绍了示波器的基本功能及操作。示波器还有一些更复杂的功能,如延迟扫描、触发延迟、X-Y工作方式等,这里就不介绍了。示波器入门操作是容易的, 真正熟练则要在应用中掌握。值得指出的是,示波器虽然功能较多,但许多情况下用其他仪器、仪表更好。例如,在数字电路实验中,判断一个脉宽较窄的单脉冲是 否发生时,用逻辑笔就简单的多;测量单脉冲脉宽时,用逻辑分析仪更好一些。数字示波器使用必须注意问题前言数字示波器因具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。区分模拟带宽和数字实时带宽带宽是最重要的指标之一。模拟示波器的带宽是一个固定的值,而数字示波器的带宽有模拟带宽和数字实时带宽两种。数字示波器对重复信号采用顺序采样或随 机采样技术所能达到的最高带宽为示波器的数字实时带宽,数字实时带宽与最高数字化频率和波形重建技术因子K相关(数字实时带宽=最高数字化速率/K),一 般并不作为一项指标直接给出。从两种带宽的定义可以看出,模拟带宽只适合重复周期信号的测量,而数字实时带宽则同时适合重复信号和单次信号的测量。厂家声 称示波器的带宽能达到多少兆,实际上指的是模拟带宽,数字实时带宽是要低于这个值的。例如说TEK公司的TES520B的带宽为500MHz,实际上是指 其模拟带宽为500MHz,而最高数字实时带宽只能达到400MHz远低于模拟带宽。所以在测量单次信号时,一定要参考数字示波器的数字实时带宽,否则会 给测量带来意想不到的误差。有关采样速率采样速率也称为数字化速率,是指单位时间内,对模拟输入信号的采样次数,常以MS/s表示。采样速率是数字示波器的一项重要指标。1.如果采样速率不够,容易出现混迭现象如果示波器的输人信号为一个100KHz的正弦信号,示波器显示的信号频率却是50KHz,这是怎么回事呢?这是因为示波器的采样速率太慢,产生了混迭现 象。混迭就是屏幕上显示的波形频率低于信号的实际频率,或者即使示波器上的触发指示灯已经亮了,而显示的波形仍不稳定。混迭的产生如图1所示。那么,对于 一个未知频率的波形,如何判断所显示的波形是否已经产生混迭呢?可以通过慢慢改变扫速t/div到较快的时基档,看波形的频率参数是否急剧改变,如果是, 说明波形混迭已经发生;或者晃动的波形在某个较快的时基档稳定下来,也说明波形混迭已经发生。根据奈奎斯特定理,采样速率至少高于信号高频成分的2倍才不 会发生混迭,如一个500MHz的信号,至少需要1GS/s的采样速率。有如下几种方法可以简单地防止混迭发生:·调整扫速;·采用自动设置(Autoset);·试着将收集方式切换到包络方式或峰值检测方式,因为包络方式是在多个收集记录中寻找极值,而峰值检测方式则是在单个收集记录中寻找最大最小值,这两种方法都能检测到较快的信号变化。·如果示波器有InstaVu采集方式,可以选用,因为这种方式采集波形速度快,用这种方法显示的波形类似于用模拟示波器显示的波形。2.采样速率与t/div的关系每台数字示波器的最大采样速率是一个定值。但是,在任意一个扫描时间t/div,采样速率fs由下式给出:fs=N/(t/div)N为每格采样点当采样点数N为一定值时,fs与t/div成反比,扫速越大,采样速率越低。下面是TDS520B的一组扫速与采样速率的数据:表1扫速与采样速率t/div(ns)1252550100200fs(GS/s)502510210.50.25综上所述,使用数字示波器时,为了避免混迭,扫速档最好置于扫速较快的位置。如果想要捕捉到瞬息即逝的毛刺,扫速档则最好置于主扫速较慢的位置。数字示波器的上升时间在模拟示波器中,上升时间是的一项极其重要的指标。而在数字示波器中,上升时间甚至都不作为指标明确给出。由于数字示波器测量方法的原因,以致于自动 测量出的上升时间不仅与采样点的位置相关,如图2中a表示上升沿恰好落在两采样点中间,这时上升时间为数字化间隔的0.8倍。图2中的b的上升沿的中部有 一采样点,则同样的波形,上升时间为数字化间隔的1.6倍。另外,上升时间还与扫速有关,下面是TDS520B测量同一波形时的一组扫速与上升时间的数 据:表2扫速与上升时间t/div(ms)502010521tr(μs)800320160803216由上面这组数据可以看 出,虽然波形的上升时间是一个定值,而用数字示波器测量出来的结果却因为扫速不同而相差甚远。模拟示波器的上升时间与扫速无关,而数字示波器的上升时间不 仅与扫速有关,还与采样点的位置有关,使用数字示波器时,我们不能象用模拟示波器那样,根据测出的时间来反推出信号的上升时间。广东泰测电子有限公司(简称:广东泰测)成立于2021年,是深圳市泰勤科技有限公司的子公司,公司立身于测试测量仪器行、工业与制造行业,与多家国内外业界著名仪器厂商有着长远而稳固的战略合作关系,公司成立至今,紧跟世界工业与制造业发展趋势,为广大的客户提供了多元化的服务,产品用于研发、生产、测试、检测、高校实验室等,涉及领域有: 5G、人工智能、新基建、智能制造、智慧城市、光伏、新能源、电源、电池、半导体、储能等引领未来科技的新行业,在多个领域提供了具有竞争力的综合性测试服务和解决方案,满足客户各类需求。主营:数字示波器、探头、交直流电源、交直流电子负载、万用表、数据采集器、功率分析仪、信号发生器、热像仪、示波记录仪、安规测试仪等产品代理品牌:RIGOL普源精电,ITECH艾德克斯,CYBERTK知用电子,EEC华仪,FLUKE福禄克,KHC北京科环,Tektronix泰克,KEITHLEY吉时利,KEYSIGHT是德科技,HIOKL日置等品牌厂家编辑于 2022-04-15 14:28数字系统设计数字信号示波器​赞同 13​​添加评论​分享​喜欢​收藏​申请

百度百科-验证

百度百科-验证

示波器_百度百科

百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心示波器播报讨论上传视频电子测量仪器收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。中文名示波器外文名oscilloscope属    性电子测量仪器应用学科机械工程;电测量仪器仪表领    域工程技术范    围能源目录1简介2分类3基本构成▪显示电路▪Y轴放大电路▪X轴放大电路▪扫描同步电路▪电源供给电路4基本原理▪波形显示▪双线示波▪双踪示波5仪器分类▪模拟式▪数字式6参数特征▪通道数分类▪带宽分类▪使用方法7常见故障现象及原因8测试应用▪电压的测量▪时间的测量▪相位的测量▪频率的测量9其他相关简介播报编辑示波器是一种用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。分类播报编辑按照信号的不同分类模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。按照结构和性能不同分类①普通示波器。电路结构简单,频带较窄,扫描线性差,仅用于观察波形。②多用示波器。频带较宽,扫描线性好,能对直流、低频、高频、超高频信号和脉冲信号进行定量测试。借助幅度校准器和时间校准器,测量的准确度可达±5%。③多线示波器。采用多束示波管,能在荧光屏上同时显示两个以上同频信号的波形,没有时差,时序关系准确。④多踪示波器。具有电子开关和门控电路的结构,可在单束示波管的荧光屏上同时显示两个以上同频信号的波形。但存在时差,时序关系不准确。⑤取样示波器。采用取样技术将高频信号转换成模拟低频信号进行显示,有效频带可达GHz级。⑥记忆示波器。采用存储示波管或数字存储技术,将单次电信号瞬变过程、非周期现象和超低频信号长时间保留在示波管的荧光屏上或存储在电路中,以供重复测试。⑦数字示波器。内部带有微处理器,外部装有数字显示器,有的产品在示波管荧光屏上既可显示波形,又可显示字符。被测信号经模一数变换器(A/D变换器)送入数据存储器,通过键盘操作,可对捕获的波形参数的数据,进行加、减、乘、除、求平均值、求平方根值、求均方根值等的运算,并显示出答案数字。基本构成播报编辑显示电路显示电路包括示波管及其控制电路两个部分。示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。(1)电子枪电子枪用于产生并形成高速、聚束的电子流,去轰击荧光屏使之发光。它主要由灯丝F、阴极K、控制极G、第一阳极A1、第二阳极A2组成。除灯丝外,其余电极的结构都为金属圆筒,且它们的轴心都保持在同一轴线上。阴极被加热后,可沿轴向发射电子;控制极相对阴极来说是负电位,改变电位可以改变通过控制极小孔的电子数目,也就是控制荧光屏上光点的亮度。为了提高屏上光点亮度,又不降低对电子束偏转的灵敏度,现代示波管中,在偏转系统和荧光屏之间还加上一个后加速电极A3。第一阳极对阴极而言加有约几百伏的正电压。在第二阳极上加有一个比第一阳极更高的正电压。穿过控制极小孔的电子束,在第一阳极和第二阳极高电位的作用下,得到加速,向荧光屏方向作高速运动。由于电荷的同性相斥,电子束会逐渐散开。通过第一阳极、第二阳极之间电场的聚焦作用,使电子重新聚集起来并交汇于一点。适当控制第一阳极和第二阳极之间电位差的大小,便能使焦点刚好落在荧光屏上,显现一个光亮细小的圆点。改变第一阳极和第二阳极之间的电位差,可起调节光点聚焦的作用,这就是示波器的“聚焦”和“辅助聚焦”调节的原理。第三阳极是示波管锥体内部涂上一层石墨形成的,通常加有很高的电压,它有三个作用:①使穿过偏转系统以后的电子进一步加速,使电子有足够的能量去轰击荧光屏,以获得足够的亮度;②石墨层涂在整个锥体上,能起到屏蔽作用;③电子束轰击荧光屏会产生二次电子,处于高电位的A3可吸收这些电子。(2)偏转系统示波管的偏转系统大都是静电偏转式,它由两对相互垂直的平行金属板组成,分别称为水平偏转板和垂直偏转板。分别控制电子束在水平方向和垂直方向的运动。当电子在偏转板之间运动时,如果偏转板上没有加电压,偏转板之间无电场,离开第二阳极后进入偏转系统的电子将沿轴向运动,射向屏幕的中心。如果偏转板上有电压,偏转板之间则有电场,进入偏转系统的电子会在偏转电场的作用下射向荧光屏的指定位置。如果两块偏转板互相平行,并且它们的电位差等于零,那么通过偏转板空间的,具有速度υ的电子束就会沿着原方向(设为轴线方向)运动,并打在荧光屏的坐标原点上。如果两块偏转板之间存在着恒定的电位差,则偏转板间就形成一个电场,这个电场与电子的运动方向相垂直,于是电子就朝着电位比较高的偏转板偏转。这样,在两偏转板之间的空间,电子就沿着抛物线在这一点上做切线运动。最后,电子降落在荧光屏上的A点,这个A点距离荧光屏原点(0)有一段距离,这段距离称为偏转量,用y表示。偏转量y与偏转板上所加的电压Vy成正比。同理,在水平偏转板上加有直流电压时,也发生类似情况,只是光点在水平方向上偏转。(3)荧光屏荧光屏位于示波管的终端,它的作用是将偏转后的电子束显示出来,以便观察。在示波器的荧光屏内壁涂有一层发光物质,因而,荧光屏上受到高速电子冲击的地点就显现出荧光。此时光点的亮度决定于电子束的数目、密度及其速度。改变控制极的电压时,电子束中电子的数目将随之改变,光点亮度也就改变。在使用示波器时,不宜让很亮的光点固定出现在示波管荧光屏一个位置上,否则该点荧光物质将因长期受电子冲击而烧坏,从而失去发光能力。示波器实物图涂有不同荧光物质的荧光屏,在受电子冲击时将显示出不同的颜色和不同的余辉时间,通常供观察一般信号波形用的是发绿光的,属中余辉示波管,供观察非周期性及低频信号用的是发橙黄色光的,属长余辉示波管;供照相用的示波器中,一般都采用发蓝色的短余辉示波管。Y轴放大电路由于示波管的偏转灵敏度甚低,例如常用的示波管13SJ38J型,其垂直偏转灵敏度为0.86mm/V(约12V电压产生1cm的偏转量),所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的图形。学生示波器X轴放大电路由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的图形。扫描同步电路扫描电路产生一个锯齿波电压。该锯齿波电压的频率能在一定的范围内连续可调。锯齿波电压的作用是使示波管阴极发出的电子束在荧光屏上形成周期性的、与时间成正比的水平位移,即形成时间基线。这样,才能把加在垂直方向的被测信号按时间的变化波形展现在荧光屏上。电源供给电路电源供给电路:供给垂直与水平放大电路、扫描与同步电路以及示波管与控制电路所需的负高压、灯丝电压等。由示波器的原理功能可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。SDS1000CML此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)的示波器(如国产ST-16型示波器、SR-8型双踪示波器等)为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)信号,该信号加在外同步(或外触发)输入端;③有些示波器的同步信号选择开关还有一档“电源同步”,是由220V,50Hz电源电压,通过变压器次级降压后作为同步信号。基本原理播报编辑波形显示由示波管的原理可知,一个直流电压加到一对偏转板上时,将使光点在荧光屏上产生一个固定位移,该位移的大小与所加直流电压成正比。如果分别将两个直流电压同时加到垂直和水平两对偏转板上,则荧光屏上的光点位置就由两个方向的位移所共同决定。如果将一个正弦交流电压加到一对偏转板上时,光点在荧光屏上将随电压的变化而移动。当垂直偏转板上加一个正弦交流电压时,在时间t=0的瞬间,电压为Vo(零值),荧光屏上的光点位置在坐标原点0上,在时间t=1的瞬间,电压为V1(正值),荧光屏上光点在坐标原点0点上方的1上,位移的大小正比于电压V1;在时间t=2的瞬间,电压为V2(最大正值),荧光屏上的光点在坐标原点0点上方的2点上,位移的距离正比于电压V2;以此类推,在时间t=3,t=4,…,t=8的各个瞬间,荧光屏上光点位置分别为3、4、…、8点。在交流电压的第二个周期、第三个周期……都将重复第一个周期的情况。如果此时加在垂直偏转板上的正弦交流电压之频率很低,仅为lHz~2Hz,那么,在荧光屏上便会看见一个上下移动着的光点。这光点距离坐标原点的瞬时偏转值将与加在垂直偏转板上的电压瞬时值成正比。如果加在垂直偏转板上的交流电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,在荧光屏上看到的就不是一个上下移动的点,而是一根垂直的亮线了。该亮线的长短在示波器的垂直放大增益一定的情况下决定于正弦交流电压峰一峰值的大小。如果在水平偏转板上加一个正弦交流电压,则会产生相类似的情况,只是光点在水平轴上移动罢了。如果将一随时间线性变化的电压(如锯齿波电压)加到一对偏转板上,则光点在荧光屏上又会怎样移动呢?当水平偏转板上有锯齿波电压时,在时间t=0瞬间,电压为Vo(最大负值),荧光屏上光点在坐标原点左侧的起始位置(零点上),位移的距离正比于电压Vo;在时间t=1的瞬间,电压为V1(负值),荧光屏上光点在坐标原点左方的1点上,位移的距离正比于电压V1;以此类推,在时间t=2,t=3,...,t=8的各个瞬间,荧光屏上光点的对应位置是2、3、…、8各点。在t=8这个瞬间,锯齿波电压由最大正值V8跃变到最大负值Vo,则荧光屏上光点从8点极其迅速地向左移到起始位置零点。如果锯齿波电压是周期性的,则在锯齿波电压的第二个周期、第三个周期、……都将重复第一个周期的情形。如果此时加在水平偏转板上的锯齿波电压频率很低,仅为1Hz ~2Hz,在荧光屏上便会看见光点自左边起始位置零点向右边8点处匀速地移动,随后光点又从右边8点处极其迅速地移动到左边起始位置零点。上述这个过程称为扫描。在水平轴加有周期性锯齿波电压时,扫描将周而复始地进行下去。光点距离起始位置零点的瞬时值,将与加在偏转板上的电压瞬时值成正比。如果加在偏转板上的锯齿波电压频率在10Hz~20Hz以上,则由于荧光屏的余辉现象和人眼的视觉暂留现象,就看到一根水平亮线,该水平亮线的长度,在示波器水平放大增益一定的情况下决定于锯齿波电压值,锯齿波电压值是与时间变化成正比的,而荧光屏上光点的位移又是与电压值成正比的,因此荧光屏上的水平亮线可以代表时间轴。在此亮线上的任何相等的线段都代表相等的一段时间。如果将被测信号电压加到垂直偏转板上,锯齿波扫描电压加到水平偏转板上,而且被测信号电压的频率等于锯齿波扫描电压的频率,则荧光屏上将显示出一个周期的被测信号电压随时间变化的波形曲线。在被测周期信号的第二个周期、第三个周期……都重复第一个周期的情形,光点在荧光屏上描出的轨迹也都重叠在第一次描出的轨迹上。所以,荧光屏上显示出来的被测信号电压是随时间变化的稳定波形曲线。为使荧光屏上的图形稳定,被测信号电压的频率应与锯齿波电压的频率保持整数比的关系,即同步关系。为了实现这一点,就要求锯齿波电压的频率连续可调,以便适应观察各种不同频率的周期信号。其次,由于被测信号频率和锯齿波振荡信号频率的相对不稳定性,即使把锯齿波电压的频率临时调到与被测信号频率成整倍数关系,也不能使图形一直保持稳定。因此,示波器中都设有同步装置。也就是在锯齿波电路的某部分加上一个同步信号来促使扫描的同步,对于只能产生连续扫描(即产生周而复始连续不断的锯齿波)一种状态的简易示波器(如国产SB-10型示波器等)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,当所加同步信号的频率接近锯齿波频率的自主振荡频率(或接近其整数倍)时,就可以把锯齿波频率“拖入同步”或“锁住”。对于具有等待扫描(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波进行一次扫描)功能的示波器(如国产ST-16型示波器、SBT-5型同步示波器、SR-8型双踪示波器等等)而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。这样,只要按照需要来选择适当的同步信号或触发信号,便可使任何欲研究的过程与锯齿波扫描频率保持同步。SHS1000双线示波在电子实践技术过程中,常常需要同时观察两种(或两种以上)信号随时间变化的过程。并对这些不同信号进行电量的测试和比较。为了达到这个目的,人们在应用普通示波器原理的基础上,采用了以下两种同时显示多个波形的方法:一种是双线(或多线)示波法;另一种是双踪(或多踪)示波法。应用这两种方法制造出来的示波器分别称为双线(或多线)示波器和双踪(或多踪)示波器。双线(或多线)示波器是采用双枪(或多枪)示波管来实现的。下面以双枪示波管为例加以简单说明。双枪示波管有两个互相独立的电子枪产生两束电子。另有两组互相独立的偏转系统,它们各自控制一束电子作上下、左右的运动。荧光屏是共用的,因而屏上可以同时显示出两种不同的电信号波形,双线示波也可以采用单枪双线示波管来实现。这种示波管只有一个电子枪,在工作时是依靠特殊的电极把电子分成两束。然后,由管内的两组互相独立的偏转系统,分别控制两束电子上下、左右运动。荧光屏是共用的,能同时显示出两种不同的电信号波形。由于双线示波管的制造工艺要求高,成本也高,所以应用并不十分普遍。双踪示波双踪(或多踪)示波是在单线示波器的基础上,增设一个专用电子开关,用它来实现两种(或多种)波形的分别显示。由于实现双踪(或多踪)示波比实现双线(或多线)示波来得简单,不需要使用结构复杂、价格昂贵的“双腔”或“多腔”示波管,所以双踪(或多踪)示波获得了普遍的应用。为了保持荧光屏显示出来的两种信号波形稳定,则要求被测信号频率、扫描信号频率与电子开关的转换频率三者之间必须满足一定的关系。首先,两个被测信号频率与扫描信号频率之间应该是成整数比的关系,也就是要求“同步”。这一点与单线示波器的原理是相同的,区别在于被测信号是两个,而扫描电压是一个。在实际应用中,需要观察和比较的两个信号常常是互相有内在联系的,所以上述的同步要求一般是容易满足的。为了使荧光屏上显示的两个被测信号波形都稳定,除满足上述要求外,还必须合理地选择电子开关的转换频率,使得在示波器上所显示的波形个数合适,以便于观察。下面谈谈电子开关的工作方式问题,这个问题与电子开关的转换频率有关。电子开关的工作方式有“交替”转换和“断续”转换两种。采用交替转换工作方式的显示的波形与双线示波法所显示的波形非常相似,它们都没有间断点。但由于被测信号UA、UB的波形是依次交替地出现在荧光屏上的,所以,如果交替的间隙时间超过了人眼的视觉暂留时间和荧光屏的余辉时间,则人们所看到的荧光屏上的波形就会有闪烁现象。为了避免这种情况的出现,就要求电子开关有足够高的转换频率。这就是说当被测信号的频率较低时,不宜采用交替转换工作方式,而应采用断续转换工作方式。当电子开关用断续转换工作方式时,在X轴扫描的每一个过程中,电子开关都以足够高的转换频率,分别对所显示的每个被测信号进行多次取样。这样,即使被测信号频率较低,也可避免出现波形的闪烁现象。双踪示波器的主要是由两个通道的Y轴前置放大电路、门控电路、电子开关、混合电路、延迟电路、Y轴后置放大电路、触发电路、扫描电路、X轴放大电路、Z轴放大电路、校准信号电路、示波管和高低压电源供给电路等组成。当显示方式开关置于交替位置时,电子开关为一双稳态电路。它受由扫描电路来的闸门信号控制,使得Y轴两个前置通道随着扫描电路门信号的变化而交替地工作。每秒钟交替转换次数与由扫描电路产生的扫描信号的重复频率有关。交替工作状态适用于观察频率不太低的被测信号。为了观察被测信号随时间变化的波形,示波管的水平偏转板上必须加以线性扫描电压(锯齿波电压)。这个扫描电压是由扫描电路产生的。当触发信号加到触发电路时,触发了扫描电路,扫描电路就产生相应的扫描信号;当不加触发信号时,扫描电路就不产生扫描信号。触发有内触发、外触发两种,由触发选择开关来选择。当该开关置于内的位置时,触发信号来自经Y轴通道送入的被测信号。当该开关置于外的位置时,触发信号是由外部送入的。这个信号应与被测信号的频率成整数比的关系。示波器在使用中,多数采用内触发工作方式。高、低压电源供给电路中的低压是供给示波器各级所需的低压电源的,高压是供给示波管显示系统电源的。仪器分类播报编辑示波器可以分为模拟示波器和数字示波器,对于大多数的电子应用,无论模拟示波器和数字示波器都是可以胜任的,只是对于一些特定的应用,由于模拟示波器和数字示波器所具备的不同特性,才会出现适合和不适合的地方。模拟式模拟示波器的工作方式是直接测量信号电压,并且通过从左到右穿过示波器屏幕的电子束在垂直方向描绘电压。数字式数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。模拟示波器要提高带宽,需要示波管、垂直放大和水平扫描全面推进。数字示波器要改善带宽只需要提高前端的A/D转换器的性能,对示波管和扫描电路没有特殊要求。加上数字示波管能充分利用记忆、存储和处理,以及多种触发和超前触发能力。廿世纪八十年代数字示波器异军突起,成果累累,大有全面取代模拟示波器之势,模拟示波器的确从前台退到后台。 [1]波形示例(5张)右图为数字示波器的实拍波形图。参数特征播报编辑通道数分类通常无论是模拟示波器还是数字示波器,可以根据其通道数分为:单通道/单踪示波器;双通道/双踪示波器;2+1通道(1外部触发)/三踪示波器;四通道/四踪示波器。带宽分类带宽是根据示波器测试要求来定,5M/10M/20M/40M/60M/100M/1G......等分类选型。使用方法示波器虽然分成好几类,各类又有许多种型号,但是一般的示波器除频带宽度、输入灵敏度等不完全相同外,在使用方法的基本方面都是相同的。以SR-8型双踪示波器为例介绍。(一)模拟示波器面板装置SR-8型双踪示波器的面板图如上图所示。其面板装置按其位置和功能通常可划分为3大部分:显示、垂直(Y轴)、水平(X轴)。现分别介绍这3个部分控制装置的作用。1.显示部分主要控制件为:(1)电源开关。(2)电源指示灯。(3)辉度 调整光点亮度。(4)聚焦调整光点或波形清晰度。(5)辅助聚焦 配合“聚焦”旋钮调节清晰度。(6)标尺亮度调节坐标片上刻度线亮度。(7)寻迹 当按键向下按时,使偏离荧光屏的光点回到显示区域,而寻到光点位置。(8)标准信号输出1kHz、1V方波校准信号由此引出。加到Y轴输入端,用以校准Y轴输入灵敏度和X轴扫描速度。2.Y轴插件部分(1)显示方式选择开关用以转换两个Y轴前置放大器YA与YB 工作状态的控制件,具有五种不同作用的显示方式:“交替”:当显示方式开关置于“交替”时,电子开关受扫描信号控制转换,每次扫描都轮流接通YA或YB 信号。当被测信号的频率越高,扫描信号频率也越高。电子开关转换速率也越快,不会有闪烁现象。这种工作状态适用于观察两个工作频率较高的信号。“断续”:当显示方式开关置于“断续”时,电子开关不受扫描信号控制,产生频率固定为200kHz方波信号,使电子开关快速交替接通YA和YB。由于开关动作频率高于被测信号频率,因此屏幕上显示的两个通道信号波形是断续的。当被测信号频率较高时,断续现象十分明显,甚至无法观测;当被测信号频率较低时,断续现象被掩盖。因此,这种工作状态适合于观察两个工作频率较低的信号。“YA”、“YB ”:显示方式开关置于“YA ”或者“YB ”时,表示示波器处于单通道工作,此时示波器的工作方式相当于单踪示波器,即只能单独显示“YA”或“YB ”通道的信号波形。“YA + YB”:显示方式开关置于“YA + YB ”时,电子开关不工作,YA与YB 两路信号均通过放大器和门电路,示波器将显示出两路信号叠加的波形。(2)“DC-⊥-AC”Y轴输入选择开关,用以选择被测信号接至输入端的耦合方式。置于“DC”是直接耦合,能输入含有直流分量的交流信号;置于“AC”位置,实现交流耦合,只能输入交流分量;置于“⊥”位置时,Y轴输入端接地,这时显示的时基线一般用来作为测试直流电压零电平的参考基准线。(3)“微调V/div”灵敏度选择开关及微调装置。灵敏度选择开关系套轴结构,黑色旋钮是Y轴灵敏度粗调装置,自10mv/div~20v/div分11档。红色旋钮为细调装置,顺时针方向增加到满度时为校准位置,可按粗调旋钮所指示的数值,读取被测信号的幅度。当此旋钮反时针转到满度时,其变化范围应大于2.5倍,连续调节“微调”电位器,可实现各档级之间的灵敏度覆盖,在作定量测量时,此旋钮应置于顺时针满度的“校准”位置。(4)“平衡” 当Y轴放大器输入电路出现不平衡时,显示的光点或波形就会随“V/div”开关的“微调”旋转而出现Y轴方向的位移,调节“平衡”电位器能将这种位移减至最小。(5)“↑↓” Y轴位移电位器,用以调节波形的垂直位置。(6)“极性、拉YA ”YA 通道的极性转换按拉式开关。拉出时YA 通道信号倒相显示,即显示方式(YA+ YB )时,显示图像为YB - YA 。(7)“内触发、拉YB ”触发源选择开关。在按的位置上(常态) 扫描触发信号分别取自YA 及YB 通道的输入信号,适应于单踪或双踪显示,但不能够对双踪波形作时间比较。当把开关拉出时,扫描的触发信号只取自于YB 通道的输入信号,因而它适合于双踪显示时对比两个波形的时间和相位差。(8)Y轴输入插座采用BNC型插座,被测信号由此直接或经探头输入。3.X轴插件部分(1)“t/div” 扫描速度选择开关及微调旋钮。X轴的光点移动速度由其决定,从0.2μs~1s共分21档级。当该开关“微调”电位器顺时针方向旋转到底并接上开关后,即为“校准”位置,此时“t/div”的指示值,即为扫描速度的实际值。(2)“扩展、拉×10”扫描速度扩展装置。是按拉式开关,在按的状态作正常使用,拉的位置扫描速度增加10倍。“t/div”的指示值,也应相应计取。采用“扩展 拉×10”适于观察波形细节。(3)“→←” X轴位置调节旋钮。系X轴光迹的水平位置调节电位器,是套轴结构。外圈旋钮为粗调装置,顺时针方向旋转基线右移,反时针方向旋转则基线左移。置于套轴上的小旋钮为细调装置,适用于经扩展后信号的调节。(4)“外触发、X外接”插座采用BNC型插座。在使用外触发时,作为连接外触发信号的插座。也可以作为X轴放大器外接时信号输入插座。其输入阻抗约为1MΩ。外接使用时,输入信号的峰值应小于12V。(5)“触发电平”旋钮 触发电平调节电位器旋钮。用于选择输入信号波形的触发点。具体地说,就是调节开始扫描的时间,决定扫描在触发信号波形的哪一点上被触发。顺时针方向旋动时,触发点趋向信号波形的正向部分,逆时针方向旋动时,触发点趋向信号波形的负向部分。(6)“稳定性”触发稳定性微调旋钮。用以改变扫描电路的工作状态,一般应处于待触发状态。调整方法是将Y轴输入耦合方式选择(AC-地-DC)开关置于地档,将V/div开关置于最高灵敏度的档级,在电平旋钮调离自激状态的情况下,用小螺丝刀将稳定度电位器顺时针方向旋到底,则扫描电路产生自激扫描,此时屏幕上出现扫描线;然后逆时针方向慢慢旋动,使扫描线刚消失。此时扫描电路即处于待触发状态。在这种状态下,用示波器进行测量时,只要调节电平旋钮,即能在屏幕上获得稳定的波形,并能随意调节选择屏幕上波形的起始点位置。少数示波器,当稳定度电位器逆时针方向旋到底时,屏幕上出现扫描线;然后顺时针方向慢慢旋动,使屏幕上扫描线刚消失,此时扫描电路即处于待触发状态。(7)“内、外” 触发源选择开关。置于“内”位置时,扫描触发信号取自Y轴通道的被测信号;置于“外”位置时,触发信号取自“外触发X 外接”输入端引入的外触发信号。(8)“AC”“AC(H)”“DC”触发耦合方式开关。 “DC”档,是直流藕合状态,适合于变化缓慢或频率甚低(如低于100Hz)的触发信号。“AC”档,是交流藕合状态,由于隔断了触发中的直流分量,因此触发性能不受直流分量影响。“AC(H)”档,是低频抑制的交流耦合状态,在观察包含低频分量的高频复合波时,触发信号通过高通滤波器进行耦合,抑制了低频噪声和低频触发信号(2MHz以下的低频分量),免除因误触发而造成的波形幌动。(9)“高频、常态、自动”触发方式开关。用以选择不同的触发方式,以适应不同的被测信号与测试目的。“高频”档,频率甚高时(如高于5MHz),且无足够的幅度使触发稳定时,选该档。此时扫描处于高频触发状态,由示波器自身产生的高频信号(200kHz信号),对被测信号进行同步。不必经常调整电平旋钮,屏幕上即能显示稳定的波形,操作方便,有利于观察高频信号波形。“常态”档,采用来自Y轴或外接触发源的输入信号进行触发扫描,是常用的触发扫描方式。“自动”挡,扫描处于自动状态(与高频触发方式相仿),但不必调整电平旋钮,也能观察到稳定的波形,操作方便,有利于观察较低频率的信号。(10)“+、-”触发极性开关。在“+”位置时选用触发信号的上升部分,在“-”位置时选用触发信号的下降部分对扫描电路进行触发。(二)使用前的检查示波器初次使用前或久藏复用时,有必要进行一次能否工作的简单检查和进行扫描电路稳定度、垂直放大电路直流平衡的调整。示波器在进行电压和时间的定量测试时,还必须进行垂直放大电路增益和水平扫描速度的校准。示波器能否正常工作的检查方法、垂直放大电路增益和水平扫描速度的校准方法,由于各种型号示波器的校准信号的幅度、频率等参数不一样,因而检查、校准方法略有差异。(三)使用步骤用示波器能观察各种不同电信号幅度随时间变化的波形曲线,在这个基础上示波器可以应用于测量电压、时间、频率、相位差和调幅度等电参数。下面介绍用示波器观察电信号波形的使用步骤。1.选择Y轴耦合方式根据被测信号频率的高低,将Y轴输入耦合方式选择“AC-地-DC”开关置于AC或DC。2.选择Y轴灵敏度根据被测信号的大约峰-峰值(如果采用衰减探头,应除以衰减倍数;在耦合方式取DC档时,还要考虑叠加的直流电压值),将Y轴灵敏度选择V/div开关(或Y轴衰减开关)置于适当档级。实际使用中如不需读测电压值,则可适当调节Y轴灵敏度微调(或Y轴增益)旋钮,使屏幕上显现所需要高度的波形。3.选择触发(或同步)信号来源与极性通常将触发(或同步)信号极性开关置于“+”或“-”档。4.选择扫描速度根据被测信号周期(或频率)的大约值,将X轴扫描速度t/div(或扫描范围)开关置于适当档级。实际使用中如不需读测时间值,则可适当调节扫速t/div微调(或扫描微调)旋钮,使屏幕上显示测试所需周期数的波形。如果需要观察的是信号的边沿部分,则扫速t/div开关应置于最快扫速档。5.输入被测信号被测信号由探头衰减后(或由同轴电缆不衰减直接输入,但此时的输入阻抗降低、输入电容增大),通过Y轴输入端输入示波器。常见故障现象及原因播报编辑没有光点或波形电源未接通。辉度旋钮未调节好。X,Y轴移位旋钮位置调偏。Y轴平衡电位器调整不当,造成直流放大电路严重失衡。水平方向展不开触发源选择开关置于外档,且无外触发信号输入,则无锯齿波产生。电平旋钮调节不当。稳定度电位器没有调整在使扫描电路处于待触发的临界状态。X轴选择误置于X外接位置,且外接插座上又无信号输入。两踪示波器如果只使用A通道(B通道无输入信号),而内触发开关置于拉YB位置,则无锯齿波产生。垂直方向无展示输入耦合方式DC-接地-AC开关误置于接地位置。输入端的高、低电位端与被测电路的高、低电位端接反。输入信号较小,而V/div误置于低灵敏度档。波形不稳定稳定度电位器顺时针旋转过度,致使扫描电路处于自激扫描状态(未处于待触发的临界状态)。触发耦合方式AC、AC(H)、DC开关未能按照不同触发信号频率正确选择相应档级。选择高频触发状态时,触发源选择开关误置于外档(应置于内档。)部分示波器扫描处于自动档(连续扫描)时,波形不稳定。垂直线条密集或呈现一矩形t/div开关选择不当,致使f扫描<水平线条密集或呈一条倾斜水平线t/div关选择不当,致使f扫描>>f信号。垂直方向的电压读数不准未进行垂直方向的偏转灵敏度(v/div)校准。进行v/div校准时,v/div微调旋钮未置于校正位置(即顺时针方向未旋足)。进行测试时,v/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。使用10 :1衰减探头,计算电压时未乘以10倍。被测信号频率超过示波器的最高使用频率,示波器读数比实际值偏小。测得的是峰-峰值,正弦有效值需换算求得。水平方向的读数不准未进行水平方向的偏转灵敏度(t/div)校准。进行t/div校准时,t/div微调旋钮未置于校准位置(即顺时针方向未旋足)。进行测试时,t/div微调旋钮调离了校正位置(即调离了顺时针方向旋足的位置)。扫速扩展开关置于拉(×10)位置时,测试未按t/div开关指示值提高灵敏度10倍计算。交直流叠加信号的直流电压值分辨不清Y轴输入耦合选择DC-接地-AC开关误置于AC档(应置于DC档)。测试前未将DC-接地-AC开关置于接地档进行直流电平参考点校正。Y轴平衡电位器未调整好。测不出两个信号间的相位差测不出两个信号间的相位差(波形显示法)双踪示波器误把内触发(拉YB)开关置于按(常态)位置应把该开关置于拉YB位置。双踪示波器没有正确选择显示方式开关的交替和断续档。单线示波器触发选择开关误置于内档。单线示波器触发选择开关虽置于外档,但两次外触发未采用同一信号。调幅波形失常t/div开关选择不当,扫描频率误按调幅波载波频率选择(应按音频调幅信号频率选择)。波形调不到要求的起始时间和部位稳定度电位器未调整在待触发的临界触发点上。触发极性(+、-)与触发电平(+、-)配合不当。触发方式开关误置于自动档(应置于常态档)。触发或同步扫描缓缓调节触发电平(或同步)旋钮,屏幕上显现稳定的波形,根据观察需要,适当调节电平旋钮,以显示相应起始位置的波形。如果用双踪示波器观察波形,作单踪显示时,显示方式开关置于YA或YB。被测信号通过YA或YB输入端输入示波器。Y轴的触发源选择“内触发一拉YB”开关置于按(常态)位置。若示波器作两踪显示时,显示方式开关置于交替档(适用于观察频率不太低的信号),或断续档(适用于观察频率不太高的信号),此时Y轴的触发源选择“内触发-拉YB”开关置“拉YB”档。使用不当造成的异常现象示波器在使用过程中,往往由于操作者对于示波原理不甚理解和对示波器面板控制装置的作用不熟悉,会出现由于调节不当而造成异常现象。测试应用播报编辑电压的测量利用示波器所做的任何测量,都是归结为对电压的测量。示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。1.直接测量法所谓直接测量法,就是直接从屏幕上量出被测电压波形的高度,然后换算成电压值。定量测试电压时,一般把Y轴灵敏度开关的微调旋钮转至“校准”位置上,这样,就可以从“V/div”的指示值和被测信号占取的纵轴坐标值直接计算被测电压值。所以,直接测量法又称为标尺法。(1)交流电压的测量将Y轴输入耦合开关置于“AC”位置,显示出输入波形的交流成分。如交流信号的频率很低时,则应将Y轴输入耦合开关置于“DC”位置。将被测波形移至示波管屏幕的中心位置,用“V/div”开关将被测波形控制在屏幕有效工作面积的范围内,按坐标刻度片的分度读取整个波形所占Y轴方向的度数H,则被测电压的峰-峰值VP-P可等于“V/div”开关指示值与H的乘积。如果使用探头测量时,应把探头的衰减量计算在内,即把上述计算数值乘10。例如示波器的Y轴灵敏度开关“V/div”位于0.2档级,被测波形占Y轴的坐标幅度H为5div,则此信号电压的峰-峰值为1V。如是经探头测量,仍指示上述数值,则被测信号电压的峰-峰值就为10V。(2)直流电压的测量将Y轴输入耦合开关置于“地”位置,触发方式开关置“自动”位置,使屏幕显示一水平扫描线,此扫描线便为零电平线。将Y轴输入耦合开关置“DC”位置,加入被测电压,此时,扫描线在Y轴方向产生跳变位移H,被测电压即为“V/div”开关指示值与H的乘积。直接测量法简单易行,但误差较大。产生误差的因素有读数误差、视差和示波器的系统误差(衰减器、偏转系统、示波管边缘效应)等。2.比较测量法比较测量法就是用一已知的标准电压波形与被测电压波形进行比较求得被测电压值。将被测电压Vx输入示波器的Y轴通道,调节Y轴灵敏度选择开关“V/div”及其微调旋钮,使荧光屏显示出便于测量的高度Hx并做好记录,且“V/div”开关及微调旋钮位置保持不变。去掉被测电压,把一个已知的可调标准电压Vs输入Y轴,调节标准电压的输出幅度,使它显示与被测电压相同的幅度。此时,标准电压的输出幅度等于被测电压的幅度。比较法测量电压可避免垂直系统引起和误差,因而提高了测量精度。时间的测量示波器时基能产生与时间呈线性关系的扫描线,因而可以用荧光屏的水平刻度来测量波形的时间参数,如周期性信号的重复周期、脉冲信号的宽度、时间间隔、上升时间(前沿)和下降时间(后沿)、两个信号的时间差等等。将示波器的扫速开关“t/div”的“微调”装置转至校准位置时,显示的波形在水平方向刻度所代表的时间可按“t/div”开关的指示值直读计算,从而较准确地求出被测信号的时间参数。相位的测量利用示波器测量两个正弦电压之间的相位差具有实用意义,用计数器可以测量频率和时间,但不能直接测量正弦电压之间的相位关系。利用示波器测量相位的方法很多,下面,仅介绍几种常用的简单方法。1.双踪法双踪法是用双踪示波器在荧光屏上直接比较两个被测电压的波形来测量其相位关系。测量时,将相位超前的信号接入YB通道,另一个信号接入YA通道。选用YB触发。调节“t/div”开关,使被测波形的一个周期在水平标尺上准确地占满8div,这样,一个周期的相角360°被8等分,每1div相当于45°。读出超前波与滞后波在水平轴的差距T,按下式计算相位差φ:φ=45°/div×T(div)如T==1.5div ,则φ=45°/div×1.5div=67.5°2.图形法测相位将示波器的X轴选择置于X轴输入位置,将信号u1接入示波器的Y轴输入端,信号u2接入示波器的X轴输入端。适当调节示波器面板上相关旋钮,使荧光屏上显现一个大小适宜的椭圆(在特殊情况下,可能是一个正圆或一根斜线)。设Y轴偏转板上的信号u1导前于X轴偏转板上的信号u21/8周期,设u2的初相为零,即φ2=0,因此当u2为零时,u1为一个较大的值。如图中的“0”点。此时,荧光屏上的光点也相应地位于“0”点。随着时间的变化,u1上升,u2也上升,则荧光屏上的光点向右上方移动。当经1/8周期后,u1、u2分别到达“1”点,此时u1到达最大值,u2为一个较大的值,荧光屏上的光点位于相应的“1”。如此继续下去,荧光屏上的光点将描出一个顺时针旋转的椭圆。如果u1滞后于u2则形成一个逆时针旋转的椭圆。当然,这只有在信号频率很低时(如几赫兹),且在短余辉的荧光屏上便会清楚地看到荧光屏上的光点顺时针或逆时针旋转的现象。由上述可见椭圆的形状是随两个正弦信号电压u1、u2相位差的不同而不同。因此可以根据椭圆的形状确定两个正弦信号之间的相位差Δφ。设A是椭圆与Y轴交点的纵坐标,B是椭圆上各点坐标的最大值。由图可见,A是对应于t=0时u1的瞬时电压,即A=Um1sinφ1B是对应于u1的幅值,即B=Um1于是A/B=(Um1sinφ1)/ Um1= sinφ1来表示。在实际测试中为读数方便,常读取2A,2B(或2C,2D),按式Δφ=arc sin(2A/2B)或Δφ=arc sin(2C/2D)来计算相位差。如果椭圆的主轴在第1和第3象限内,则相位差在0°~90°或270°~360°之间;如果主轴在第2和第4象限内,相位差在90°~180°或180°~270°之间。频率的测量用示波器测量信号频率的方法很多,下面介绍常用的两种基本方法。1.周期法对于任何周期信号,可用前述的时间间隔的测量方法,先测定其每个周期的时间T,再用下式求出频率f :f=1/T例如示波器上显示的被测波形,一周期为8div,“t/div”开关置“1μs”位置,其“微调”置“校准”位置。则其周期和频率计算如下:T=1us/div×8div = 8usf= 1/8us =125kHz所以,被测波形的频率为125kHz。2.图形法测频率将示波器置X-Y工作方式,被测信号输入Y轴,标准频率信号输入“X外接”,慢慢改变标准频率,使这两个信号频率成整数倍时,例如fx :fy=1:2,则在荧光屏上会形成稳定的图形。图的形状不但与两个偏转电压的相位有关,而且与两个偏转电压的频率也有关。用描迹法可以画出ux与uy的各种频率比、不同相位差时的图形。利用图形与频率的关系,可进行准确的频率比较来测定被测信号的频率。其方法是分别通过图形引水平线和垂直线,所引的水平线垂直线不要通过图形的交叉点或与其相切。若水平线与图形的交点数为m,垂直线与图形的交点数n,则fy / fx=m / n当标准频率fx(或fy)为已知时,由上式可以求出被测信号频率fy(或fx)。显然,在实际测试工作中,用李沙育图形进行频率测试时,为了使测试简便正确,在条件许可的情况下,通常尽可能调节已知频率信号的频率,使荧光屏上显示的图形为圆或椭圆。这时被测信号频率等于已知信号频率。由于加到示波器上的两个电压相位不同,荧光屏上图形会有不同的形状,但这对确定未知频率并无影响。其他相关播报编辑注意事项仪器操作人员的安全和仪器安全,仪器在安全范围内正常工作,保证测量波形准确、数据可靠,应注意:1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束轰击一点宜在荧光屏上形成暗斑,损坏荧光屏。2.测量系统- 例如示波器、信号源;打印机、计算机等设备等。被测电子设备- 例如仪器、电子部件、电路板、被测设备供电电源等设备接地线必须与公共地(大地)相连。3. TDS200/TDS1000/TDS2000 系列数字示波器配合探头使用时,只能测量(被测信号- 信号地就是大地,信号端输出幅度小于300V CAT II)信号的波形。绝对不能测量市电AC220V 或与市电AC220V 不能隔离的电子设备的浮地信号。(浮地是不能接大地的,否则造成仪器损坏,如测试电磁炉。)4.通用示波器的外壳,信号输入端BNC 插座金属外圈,探头接地线,AC220V 电源插座接地线端都是相通的。如仪器使用时不接大地线,直接用探头对浮地信号测量,则仪器相对大地会产生电位差;电压值等于探头接地线接触被测设备点与大地之间的电位差。这将对仪器操作人员、示波器、被测电子设备带来严重安全危险。5. 用户如须要测量开关电源(开关电源初级,控制电路) 、UPS(不间断电源)、电子整流器、节能灯、变频器等类型产品或其它与市电AC220V 不能隔离的电子设备进行浮地信号测试时,必使用DP100高压隔离差分探头。数字示波器示波器使用中的其他注意事项:(1)热电子仪器一般要避免频繁开机、关机,示波器也是这样。(2)如果发现波形受外界干扰,可将示波器外壳接地。(3)“Y输入”的电压不可太高,以免损坏仪器,在最大衰减时也不能超过400 V.“Y输入”导线悬空时,受外界电磁干扰出现干扰波形,应避免出现这种现象。(4)关机前先将辉度调节旋钮沿逆时针方向转到底,使亮度减到最小,然后再断开电源开关。(5)在观察荧屏上的亮斑并进行调节时,亮斑的亮度要适中,不能过亮。示波器分为万用示波表,数字示波器,模拟示波器,虚拟示波器,任意波形示波器,手持示波表,数字荧光示波器,数据采集示波器 [1]。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

示波器原理 - 什么是示波器?示波器的使用方法 - 知乎

示波器原理 - 什么是示波器?示波器的使用方法 - 知乎首发于示波器使用方法切换模式写文章登录/注册示波器原理 - 什么是示波器?示波器的使用方法是德科技 Keysight Technologies​已认证账号示波器是设计和测试电子设备和器件最常用的工具。数字储存示波器(简称DSO)和混合信号示波器(简称MSO)都是强大的仪器,用于显示及测量随时间变化的电子信号,并且能有助于确定哪一个器件运行正常,而哪一个器件出现故障。示波器还能帮助您确定新近设计的器件是否能按照您想要的方式运行。本文简要介绍示波器原理,让您了解什么是示波器,以及如何操作示波器。我们将会探讨示波器的应用,并概括介绍其基本的测量和性能特征。本文还将介绍不同类型的探头,并讨论它们的优缺点。示波器电子技术在我们的生活中无所不在。每天都有上百万人使用电子产品,例如手机、电视和计算机。随着电子技术的进步,这些产品的工作速度也变得越来越快。如今,大多数电子产品都采用了高速数字技术。工程师们应当能够精确地设计和测试他们在高速数字产品中所使用的元器件。他们在设计和测试元器件时所使用的仪器必须特别适合处理高速和高频的特性才行,而示波器正好是这样的一种仪器。示波器是一种功能强大的工具,在设计和测试电子器件方面很有用。它们在您判定系统器件是否正常方面扮演极为重要的角色,而且还能帮助您确定新设计的元器件是否按照预想的方式进行工作。示波器的功能远比数字万用表更强大,因为它们可以使您观察电子信号的实际情况。示波器的应用极为广泛,包括通用电子测试、工业自动化、汽车、大学的研究实验室以及航空航天 / 国防产业等。许多公司都依赖示波器来查找缺陷,从而制造出质量过硬的产品。好文推荐: 电子信号示波器的主要用途是显示电子信号。通过观察示波器上显示的信号,您可以确定电子系统的某个元器件是否在正常工作。因此,要想了解示波器的工作方式,必须先要了解信号的基本示波器原理。波形特性电子信号会以波形或脉冲的形式出现。波形的基本特性包括:幅度 - 在工程应用中经常使用的幅度定义主要有两个。第一种通常称为峰值幅度,定义为干扰信号的最大位移量。第二种是均方根(RMS)幅度。要计算波形的 RMS 电压,必须将波形值平方并求出平均电压,然后再求平方根。对正弦波来说,RMS 幅度等于峰值幅度的 0.707 倍。相移 - 相移是指两个其他条件都相同的波形之间的水平位移量,以度或弧度为单位。正弦波的周期以 360 度来表示。因此,如果两个正弦波相差半个周期,那么它们的相对相移就是 180 度。周期 - 波形的周期是指波形重复出现一次所花费的时间,以秒为单位。频率 - 每个周期性波形都有一个频率。频率是指波形在一秒内重复出现的次数(如果您使用 Hz 为单位)。频率与周期互为倒数。图 1. 正弦波的峰值幅度和 RMS 幅度图 2. 三角波的周期波形 波形是指波的形状或图像。波形可以提供许多有关信号的信息,例如,它可以告诉您电压是否突然发生改变、呈线性变化或保持不变。标准的波形有很多种,本节仅介绍您最常遇到的几种。正弦波 - 正弦波通常与交流(AC)电源有关,例如您屋内的电源插座。正弦波的峰值幅度并非一直恒定,如果峰值幅度会随着时间不断地下降,我们就称这种波形为阻尼正弦波。图 3. 正弦波方波 / 矩形波 - 方波会在两个不同的值之间周期性地跳动,因此在高点和低点部分的长度会相等。矩形波不同的地方在于高、低点部分的长度并不相等。图 4. 方波三角波 / 锯齿波 - 在三角波中,电压会随着时间呈线性变化。它的信号边沿称为斜波,这是因为其波形会斜升或斜降到某个电压。由于锯齿波前面或后面的信号沿会随着时间产生线性的电压响应,所以看起来与三角波类似。但对面的信号沿几乎是立即下降的。脉冲 - 脉冲是指突然出现在固定电压中的干扰,就像在一个房间中突然打开电灯,然后迅速熄灭电灯的情形。一连串的脉冲被称为脉冲串。延续前面的比喻,这就好比不断重复快速开灯与关灯的动作一样。脉冲是信号中常见的毛刺或错误波形。如果信号只传送一条信息,那么脉冲也可看作是一个波形。图 5. 三角波图 6. 锯齿波图 7. 脉冲复合波波形也可以是以上各种波形的混合。它们不一定要具备周期性,而且可以是非常复杂的波形。模拟信号与数字信号的比较 模拟信号代表给定范围内的任意值。您不妨想象一下模拟时钟,时针每隔 12 个小时旋转 1 周。在此期间,时针一直不断移动,不会出现读值跳动或不连续的情形。现在将它与数字时钟比较一下。数字时钟仅显示小时和分钟,因此是以分钟作为间隔时间。它会一下子从 11:54 跳至 11:55。数字信号同样具备离散和量化的特性。通常,离散信号具有两个可能的值(高或低,1 或 0 等),因此信号会在这两个可能的值之间上下跳动。什么是示波器,您为什么需要它?信号完整性示波器的主要用途是精确地显示电子信号。因此,信号完整性显得非常重要。信号完整性是指示波器重建波形并且精确显示原始信号的能力。由于在示波器的波形不同于真实信号时,测试毫无意义,所以信号完整性低的示波器是没有价值的。但是,无论示波器的性能有多高也无法完全再现真实信号。这是因为当您将示波器连接到电路时,示波器就会变成电路的一部分。换言之会有一些负载效应产生。仪器制造商虽然尽力将负载效应降至最低,但就某种程度而言它们仍然会存在。“高信号完整性对于示波器进行精确测量至关重要。 要想实现稳定设计,您必须知道需要关注哪些技术指标。”示波器的外观一般,现代示波器的外观与图 8 中的示波器相似。然而示波器种类繁多,您的示波器看起来或许会与之不尽相同。尽管如此,大多数示波器都具备一些基本特性。多数示波器的前面板大致可分为几个区域:通道输入、显示屏、水平控制、垂直控制以及触发控制。如果您的示波器未配备 Microsoft Windows 操作系统,那么它很可能会提供一组功能键,用于控制屏幕上的菜单。您可以通过通道输入接头(即插入到探头的连接器)把信号发送到示波器中。显示屏是用来显示这些信号的屏幕。水平和垂直控制区域包含了一些旋钮和按键,可用于控制在显示屏上的信号的水平轴(通常表示时间)和垂直轴(通常表示电压)。触发控制支持您对示波器进行设置,确定在何种条件下时基可以执行采集任务。图 8. Keysight InfiniiVision 2000 X 系列示波器的前面板示波器的后面板如图 9 所示。图 9. Keysight Infiniium 9000 系列示波器的后面板如图所示,许多示波器都拥有与个人计算机相同的连通性,包括光盘驱动器、CD-RW 驱动器、DVD-RW 驱动器、USB端口、串行端口,以及外部监测器、鼠标和键盘输入等。示波器的用途示波器是一种测试与测量仪器,可显示某个变量与另一个变量之间的关系。例如,它可以在显示屏上绘制一个电压(y 轴)—时间(x 轴)图。图 10 显示了一个图表示例。如果您需要测试某个电子器件是否正常工作,这项功能会很有用。如果您知道移除该器件之后信号的波形会发生什么变化,您就可以利用示波器来查看这个器件是否在输出正确的信号。请注意,x 轴和 y 轴会以网格线分成一些格子。您可以利用这种网格线执行手动测量,但新型示波器能够自动执行大多数的测量,并且得到更精确的结果。示波器的功用不只是绘制电压—时间图。示波器提供多个输入(也称通道),每个通道都能独立工作。因此,您可以将通道 1 连接到某个器件,并将通道 2 连接到另一个器件。随后,示波器可以绘出通道 1 与通道 2 分别测得的电压之间的比较图。该模式称为示波器的 XY 模式,适用于绘制 I-V 图或 Lissajous 图。根据 Lissajous 图的形状可以得知两个信号之间的相位差与频率比。图 11 显示了 Lissajous 图及其代表的相位差/频率比。图 10. 在示波器上显示的方波的电压-时间图图 11.Lissajous 图形示波器的类型模拟示波器第一种是模拟示波器,它使用阴极射线管来显示波形。屏幕上涂有荧光物质,只要被电子束集中就会发光。当连续的荧光点亮起时,您可以看到信号的再现图形。为了使示波器稳定地显示波形,必须使用触发。当显示屏上的整个波形迹线完成时,示波器会等到特定的事件发生后(例如,上升沿超过某个电压值)再次开始显示迹线。未经触发的显示画面是没有用处的,因为它显示的波形并不稳定(同样适用于下面将会讨论的 DSO 和 MSO 示波器)。模拟示波器非常实用,因为荧光点会继续发光一段时间而不会马上消失。您可以在几个彼此重叠的示波器迹线上看到信号的毛刺或不规则性。由于当电子束击中屏幕时便会显示波形,所以显示信号的亮度与实际信号的亮度有关。这使显示屏与三维显示屏类似(换句话说,x 轴代表时间,y 轴代表电压,而 z 轴则代表亮度)。模拟示波器的不足之处是无法使显示画面 “固定”,从而使波形停留较长的时间。当荧光物质不再发光时,该部分的信号也随之消失。此外,您无法自动执行波形测量,必须使用显示屏上的网格线进行手动测量。电子束在进行水平扫描和垂直扫描时存在一个速度上限,这会导致模拟示波器可显示的信号类型也十分有限。尽管模拟示波器目前还拥有不少用户,但其销量大不如前。数字示波器已经成为用户的主流选择。数字存储示波器(DSO)数字存储示波器(通常称为 DSO)是为了弥补模拟示波器的诸多不足而发明的。 DSO 输入一个信号,并通过模数转换器将其数字化。图 12 显示了是德科技数字示波器采用的一种 DSO 体系结构。图 12. 数字示波器的体系结构衰减器会调整波形。垂直放大器会在波形传到模数转换器(ADC)时做进一步的调整。ADC 会对收到的信号进行采样和数字转换,随后将这个数据存入存储器中。触发器会寻找触发事件,而时基会调整示波器的时间显示。在示波器显示信号之前,微处理器系统可以执行您指定的其他后期处理任务。数据以数字形式表示,可使示波器执行各种波形测量。信号可以无限期地存放在存储器中,也可打印或通过闪存、LAN、 USB 或 DVD-RW 传输到计算机中。事实上,您还能通过软件提供的虚拟前面板在计算机上控制和监测示波器。混合信号示波器(MSO)DSO 的输入信号属于模拟信号,通过数模转换器将其数字化。随着数字电路技术的蓬勃发展,同时监测模拟信号与数字信号变得越来越重要。鉴于此,示波器厂商着手生产能够触发和显示模拟与数字信号的混合信号示波器。这类仪器通常具备少数几个模拟通道(2 或 4)和更多的数字通道(参见图 13)。图 13. 混合信号示波器的前面板输入提供了 4 个模拟通道和 8 个数字通道混合信号示波器的优点是可以触发任意组合的模拟与数字信号,并且显示以相同时基进行关联的所有信号。便携式 / 手持式示波器顾名思义,便携式示波器是指外形小巧、利于随身携带的示波器。如果您需要在许多地点或实验室的不同工作台之间移动示波器,那么便携式示波器就是您的最佳选择。图 14 显示了 Keysight InfiniiVision X 系列便携式示波器。便携式示波器的优点是轻便易携带,可快速打开和关闭,易于使用。它们的性能通常不如大型示波器全面,但 Keysight InfiniiVision 2000 和 3000 X 系列扭转了这一劣势。它们不仅具备便携式示波器的便携性与易用性,还拥有足够强大的功能,能够应对目前大多数的调试需求(带宽高达 6 GHz)。图 14.Keysight InfiniiVision 2000 X 系列便携式示波器示波器的类型经济型示波器经济型示波器的价位适中,但其性能逊于高性能示波器。这类示波器常用于大学的实验室中,主要优势就是低价位。您可以适中的价格买到非常实用的示波器。高性能示波器高性能示波器可提供最佳的性能。当用户需要高带宽、快速采样率和更新速率、较大存储器深度以及广泛的测量功能时,通常会选择这种示波器。图 15 显示了 Keysight Infiniium 90000A 系列高性能示波器。图 15.Keysight Infiniium 90000A 系列示波器高性能示波器的主要优势是支持您适当地分析各种信号,提供多种应用软件和工具,使分析现有技术变得简单而快速。它的劣势主要是在它的价格和体积上。示波器的使用范围凡是需要测试或应用电子信号的公司几乎都会用到示波器。因此,示波器的应用范围极为广泛:– 汽车技术人员通过示波器来诊断汽车的电气问题。– 大学实验室使用示波器向学生教授电子知识。– 全球各地的研究组都拥有示波器。– 手机制造商使用示波器来测试信号的完整性。– 军事和航空航天行业使用示波器来测试雷达通信系统。– 研发工程师使用示波器来测试和设计新的技术。– 示波器也可用于一致性测试。例如,用于确保 USB 和 HDMI 的输出符合某些标准。示波器的用途十分广泛,以上只是其中的几种。它的确是一种功能强大的通用仪器。基本的示波器控制与测量基本的前面板控制通常,您必须使用前面板上的旋钮和按键来操作示波器。除了前面板上提供的控制机构以外,许多高端示波器现在还配有操作系统,因此可以像计算机一样来操作。您可以为示波器连接鼠标和键盘,并使用鼠标通过显示屏上的下拉式菜单和按键来调整控制。此外,有些示波器还配有触摸屏,只需通过触笔或指尖就能访问菜单。开始之前 ...当您第一次使用示波器时,请先检查您要使用的输入通道是否已经打开。然后找到并按下 [Default Settings],使示波器恢复到默认状态。接着再按下 [Autoscale] 键,自动设定垂直和水平刻度,以便在显示屏上完美地呈现波形。以此作为起点,然后再做些必要的调整。如果您无法追踪到波形或在显示波形方面出现困难,请重复以上步骤。大部分示波器的前面板都至少包括四个主要区域:垂直和水平控制,触发控制以及输入控制。垂直控制示波器的垂直控制结构通常集中在一个标示为 Vertical 的区域内,这些控制结构可以让您调整显示屏的垂直刻度。例如,其中有一个控制机构可以指定显示屏网格的 y 轴上的每格(刻度)电压。您可以通过降低每格电压来放大显示波形,或提高每格电压来缩小显示波形。另外还有一个控制机构可以调整波形的垂直偏移,它可以让整个波形在显示屏上往上或往下平移。图 16 是Keysight InfiniiVision 2000 X 系列示波器的垂直控制区域。图 16. Keysight InfiniiVision 2000 X 系列示波器前面板上的垂直控制区域水平控制 示波器的水平控制机构通常集中在前面板上标示为 Horizontal 的区域。这些控制机构可以让您调整显示屏的水平刻度。其中有一个控制机构可以指定 x 轴的每格时间。同样,只要减少每格时间,您就可以放大显示较窄时间范围内的波形。另外还有一个控制机构可调整水平延迟(偏置),它可以让您扫描一个时间范围。图 17 是Keysight InfiniiVision 2000 X 系列示波器的水平控制区域。图 17. Keysight InfiniiVision 2000 X 系列示波器前面板上的水平控制区域触发控制 如前所述,在您的信号上进行触发有助于显示一个稳定、可用的波形,并使您可以查看感兴趣的波形部分。触发控制可使您选择垂直触发电平(例如您希望示波器触发时所在的电压)和不同的触发功能。常见的触发类型包括:边沿触发边沿触发是最常见的一种触发模式。当电压越过某个阈值时,触发就会发生。您可以选择在上升沿或下降沿触发。图 18 是在上升沿触发的图形显示。图 18. 当您在上升沿进行触发时,只要达到阈值,示波器就会进行触发毛刺触发在毛刺触发模式下,当事件或脉冲宽度大于或小于指定的时间长度时就会进行触发。这项功能对于发现随机毛刺或错误非常有用。如果这些毛刺不常出现,可能会很难看到,但只要使用毛刺触发您就可以捕获到许多这类错误。图 19 是Keysight InfiniiVision 6000 系列示波器捕获到的一个毛刺。图 19. Keysight InfiniiVision 6000 系列示波器捕获到的一个偶发毛刺。脉冲宽度触发当您寻找特定脉冲宽度时,脉冲宽度触发与毛刺触发类似。但这项触发功能更普遍,因为您可以在任何指定宽度的脉冲上触发,并可选择想要在脉冲的哪个极性(负或正)上触发。您也可以设定触发的水平位置,以观察触发前后所发生的事。例如,您可以执行毛刺触发来找出错误,然后查看触发前的信号以了解造成毛刺的原因。如果将水平延迟设置为 0,则触发事件将会以水平方向出现在屏幕中间。在触发之前发生的事件会出现在屏幕的左边,在触发之后立即发生的事件会出现在右边。您也可以设置触发耦合,以及想要触发的输入信号源。您不一定非得在您的信号上触发,而是还可以在相关的信号上触发。图 20 是示波器前面板的触发控制区域。图 20. Keysight InfiniiVision 2000 X 系列示波器前面板上的触发控制区域输入控制示波器通常提供 2 或 4 个模拟通道。这些通道会加以编号,而且每个通道通常会对应一个相关的按键,供您打开或关闭通道。另外,您也可以选择指定的交流或直流耦合。如果选择直流耦合,则输入整个信号。反之,交流耦合会阻隔直流分量,并将波形的中心设在大约 0 V(接地)。此外,您还可以通过选择键为每个通道指定探头阻抗。您也可以通过输入控制机构选择采样类型。信号的采样有两种基本的方法: 实时采样实时采样会对波形进行频繁的采样,因此在每次采集时都能捕获到完整的波形图像。借助实时采样功能,当前的一些高性能示波器能够单次捕获高达 33-GHz 带宽的信号。等效时间采样等效时间采样必须历经多次采集才能建立波形。它会在第一次采集时采样信号的某个部分,在第二次采集时采样另一部分,依此类推。随后它会将所有的信息结合在一起以重建波形。等效时间采样适用于高频信号,这些信号对实时采样来说速度太快(>33 GHz)。功能键您可以在未配备 Windows 操作系统的示波器上找到一些功能键(如图 8 所示),利用这些功能键来访问示波器显示屏上的菜单系统。图 21 列举了按下功能键时弹出的一种快捷菜单。该菜单用于选择触发模式。您可以连续按动多功能键以切换不同的选项,或者利用前面板上的旋钮转到您想要的选项。图 21. 在触发菜单下,按下功能键时出现的 Trigger Type(触发类型)菜单。示波器的使用数字示波器可以支持您执行广泛的波形测量,测量的复杂程度和范围取决于示波器的功能组合。图 22 是Keysight 8000 系列示波器的空白屏面。请注意,在屏幕的最左边有一排测量按键 / 图标,使用鼠标将这些图标拖曳到波形上,示波器便可计算出测量结果。这些图标非常直观地显示了可以执行哪一种测量计算,因此用起来非常方便。图 22. Keysight 示波器的空白屏面许多示波器都会提供以下的基本测量:峰峰值电压测量这项测量可以计算单个波形周期内的高低电压之间的电压差。图 23. 峰峰值电压电压有效值(RMS 电压)测量这项测量计算波形的 RMS 电压,该值可进一步用来计算功率。图 24. 上升时间示例(显示峰峰值电压从 0% 到 100% 所需的时间,而不是通常设置的 10% 到 90%)上升时间 - 这项测量旨在计算信号从低电压上升到高电压所花的时间。通常是计算波形从峰峰值电压的 10% 变到 90% 所用的时间。上升时间是上限阈值上的时间减去您正在测量的边缘的下阈值上的时间。下降时间相似,即下阈值上的时间减去您正在测量的边缘的上限阈值上的时间。一旦您已采集到信号并将其显示在示波器上,下一步通常是在波形上进行测量。示波器现在具备极其丰富内置测量功能,使您能迅速分析波形。这些基本测量的范例包括:脉宽测量脉宽是从第一个上升沿的中间阈值到下一个下降沿的中间阈值的时间。在进行正脉宽测量时,计算脉冲宽度的方法是,计算波形从峰峰值电压的 50% 上升到最大电压再回落到 50% 所需的时间。负脉宽测量则是计算波形从峰峰值电压的 50% 降到最小电压再回到 50% 所需的时间。幅度和其它电压测量这是波形显示幅度的测量。通常您也可测量峰峰值电压、最大电压、最低电压以及平均电压。周期 / 频率:周期定义为中间阈值两次连续交叉点电压之间的时间。频率定义为 1/周期。以上是许多示波器都会提供的测量项目,但大多数示波器所能执行的测量并不仅限于此。示波器基本运算功能除了前面讨论的测量功能以外,您还可以针对您的波形执行许多数学运算,包括:包括:傅立叶变换 - 通过傅立叶变换可以可知道信号由哪些频率组成。绝对值 - 此项运算功能可以帮助显示波形的绝对值(以电压值表示)。积分 - 这个功能可以计算波形的积分。加减运算 - 您可以利用加减运算将多个波形相加或相减,并示出运算结果所产生的信号。再次强调,以上只是示波器所提供的一小部分测量与运算功能。重要的示波器性能特性示波器的许多特性都会明显影响仪器的性能,进而决定您对设备做出准确测试的能力。本节介绍这些最基本的特性,也会帮助您熟悉示波器的术语,并说明如何明智地挑选最符合您需求的示波器。示波器带宽带宽是示波器的一项最重要特性,因为它表示了示波器在频域内的具体范围。换言之,带宽决定了您能够准确显示与测试的信号范围(以频率表示)。带宽以赫兹为测量单位。没有足够的带宽,您的示波器将无法准确再现真实的信号。例如,您可能会发现信号的幅度是错的、信号边沿并不稳定或有波形细节丢失。示波器带宽是指将信号衰减 3 dB 时的最低频率。我们也可以从另外一个角度来解释带宽:如果您在示波器中输入一个纯正弦波,当显示的幅度达到真实信号幅度的 70.7% 时的最小频率即为带宽。有关示波器带宽的详细信息,请参见应用指南《为您的应用评测示波器带宽》。示波器通道通道是指示波器的独立输入。示波器通道的数量介于 2 到 20 个之间,通常是 2 或 4 个。通道所传送的信号类型也不尽相同。有些示波器只具有模拟通道(这些仪器称为 DSO――数字信号示波器),另一些示波器同时具有模拟通道和数字通道,称为混合信号示波器(MSO)。例如, Keysight InfiniiVision 系列 MSO 提供 20 个通道,其中 16 个是数字通道,4 个是模拟通道。请确保有足够的通道供应用使用。如果您只有两个通道,但必须同时显示 4 个信号,显然会出问题。图 25. Keysight MSO 2000 系列示波器上的模拟和数字通道示波器采样率示波器的采样率是指每秒可采集的样本数量。建议您选择采样率至少比带宽大 2.5 倍的示波器,但采样率最好为带宽的 3 倍以上。在评估示波器制造商所宣传的采样率技术指标时必须要谨慎,厂商通常会列出示波器可达到的最大采样率,但这样的采样率通常只有在使用一个通道的情况下才能达到。如果同时使用多个通道,采样率就会下降。因此,请确认在使用多少个通道的情况下,仍可维持厂商所声称的最大采样率。如果示波器的采样率太低,您在示波器上所看到的信号可能不是很精确。例如,假设您想查看一个波形,但示波器的采样率每个周期只能产生两个数据点(图 26)。图 26. 采样率每个周期产生 2 个数据点的波形现在假设是相同的波形,但是采样率提高为每个周期采样 7 次(图 27)。图 27. 采样率每个周期产生 7 个数据点的波形显然每秒采集的样本越多,显示的波形就越清晰、准确。如果针对以上的例子持续提高波形的采样率,则采样数据点最终看起来几乎是连续的。事实上,示波器会使用 sin(x)/x 内插法来填满采样数据点之间的空间。有关示波器采样率的更多信息,请参见应用指南《评测示波器采样率与采样保真度的关系 -- 如何进行最精确的数字测量》。示波器存储深度如前所述,数字示波器使用 A/D(模拟 /数字)转换器对输入的波形进行数字转换,经数字转换的数据会存储到示波器的高速存储器中。存储深度是指可以存储的采样或数据点的数量,也就是可以存储数据的时间长度。存储深度在示波器的采样率方面扮演着相当重要的角色。在理想条件下,不论示波器如何设置,采样率都应维持不变。但这样的示波器在很大的每格时间(时间 / 格)设置下需要相当大存储器,而其售价将会超出许多客户所能负担的范围。实际上,只要增加时间范围,采样率便会下降。存储器深度至关重要,因为示波器的存储器深度越大,您以全采样速率来采集波形的时间就越久。我们可以用数学算式来表示:存储器深度 =(采样率)(显示屏的时间设置范围)因此,如果想在较长的时间范围内显示高分辨率数据点,那么就需要使用深存储器。确认示波器在最深的存储器深度设置时的性能也很重要。在此模式下示波器的性能通常会急剧下降,因此许多工程师只有在必要的时候才会使用深存储器。有关设备存储器深度的更多信息,请参见应用指南 Demystifying Deep Memory Oscilloscopes。波形捕获率捕获率是指示波器采集和更新波形显示的速率。虽然肉眼上看上去好像示波器正在显示“作用中”的波形,但那是因为更新的速度太快,以致肉眼无法察觉到变化。事实上,每次波形采集之间都会出现一段静寂时间(也称死区时间)(见图 28),此时波形的某个部分并不会显示在示波器上。因此,如果在这段时间出现一些偶发事件或毛刺,您是不会看见的。显而易见,快速的捕获率非常重要。捕获率越快,意味着死区时间越短,可捕获到偶发事件或毛刺的机率就越高。例如,您正在显示的信号中,如果每 50,000 个周期出现一次毛刺,而您的示波器的捕获率是每秒 100,000 个波形,那么平均每秒可以有两次捕获到这个毛刺。但如果示波器的捕获率是每秒 800 个波形,那么平均要花一分钟才能捕获到这个毛刺。这将必须等待较长的时间。在比较不同示波器的更新速率技术指标时必须要小心。有些制造商在广告中所声称的更新速率,其实必须是在特殊的采集模式下才能达到。这些采集模式可能会严重限制示波器的性能,例如存储深度、采样率和波形的重建因此,最好能确认示波器在最大更新速率下显示波形时的性能。示波器连通性 示波器提供了多种连通功能。有些示波器会配备 USB 端口、DVD-RW 光驱、外置硬盘和外部显示器端口等。以上所有的特性都可以帮助您更容易地使用示波器和传输数据。有些示波器还会配备操作系统,让您的示波器像个人计算机一样运行。在连接了外部显示器、鼠标和键盘后,您就可以像把示波器嵌入到电脑中一样来查看示波器的显示画面和进行控制操作。在许多情况下,您也可以通过 USB 或 LAN 连接,将数据从示波器传送到 PC。良好的连通性特性可节省大量宝贵的时间,协助您更轻松地完成工作。例如,您可以迅速而完整地将数据传送到笔记本电脑,或与不同地点的同事分享数据。您也可以通过 PC 对示波器进行远程控制。在很多情况下,用户都需要高效地传输数据,因此购买具备出色连通特性的示波器才是明智的投资。图 28. 静寂时间(死区时间)示意图圆圈指出的偶发事件将不显示示波器探头示波器决定着显示信号和分析信号的准确程度,而用来连接示波器与被测件(DUT)的探头则与信号完整性息息相关。如果您使用的是 1 GHz 的示波器,但探头却只支持 500 MHz 的带宽,那么您将无法充分利用示波器的带宽。本节讨论探头的类型及每种探头所适合的应用。负载没有任何一个探头可以完美地复制您的信号,因为当您把探头连接到电路上时,探头就会变成该电路的一部分。电路中的部分电能会流经探头,我们称之为负载。负载共有三种:电阻、电容和电感。电阻负载电阻负载会造成显示的信号出现错误的幅度,也可能在连接探头时导致故障的电路开始发生作用。探头的电阻最好比信号源电阻大 10 倍以上,以便使幅度降低到 10% 以下。电容负载电容负载会导致上升时间变慢,并使带宽变小。为了减少电容负载,探头的带宽至少应是信号带宽的 5 倍。电感负载电感负载在您的信号中会以振铃形式出现。它是由探头接地导线的电感效应引起的,因此请尽可能选用最短的导线。 无源探头无源探头只包含无源器件,不需要使用电源便可运行。这类探头在探测带宽小于 600 MHz 的信号时很有用,一旦超过这个频率,就需使用另一种探头(有源探头)。无源探头通常价格较低,且兼具易于使用和坚固耐用的特性。它是一种精确的多功能探头。无源探头的种类包括低阻分压探头、补偿探头、高阻分压探头及高电压探头。无源探头通常会产生高电容负载和低电阻负载。图 29. 无源探头有源探头使用有源探头时,必须通过电源对探头内部的有源器件供电。有时,探头会通过 USB 电缆连接、外部机箱或示波器主机供电。这类探头使用有源器件来放大或调整信号。有源探头可支持更高的信号带宽,因此很适合高性能的应用。有源探头的价格要比无源探头高出许多,不但耐用性差,探针也比较重。但这类探头可以提供最佳的电阻和电容负载组合,并可让您测试更高频率的信号。Keysight InfiniiMax 系列探头属于高性能探头。它们在探针中使用一个阻尼电阻器,可以大幅减少负载效应。此外,它们也提供非常高的带宽。图 30. 有源探头电流探头电流探头可用来测量流经电路的电流,它们通常体积较大,且带宽有限(100 MHz)。探头附件与探头相配套的还有各种不同类型的探针,从可以包裹缆线的粗大型探针,到细如发丝的纤细型的探针应有尽有。有了这些探针,您就可以更轻松地接触测试电路或被测件的各个部分。图 31. 电流探头结论在当今的科技领域中,示波器是一种功能强大的工具。它们适用于非常广泛的应用,并且较之于其他的测试与测量工具拥有许多优点。阅读了本应用指南之后,您应该已对示波器原理有了较为清晰的认识。如能再接再厉,阅读一些更高级的专题文章,相信您在以后使用示波器时会更加得心应手。有关是德科技示波器的更多信息,请访问示波器编辑于 2024-01-22 19:49・IP 属地马来西亚示波器仪器仪表是德科技(中国)有限公司Keysight​赞同 165​​6 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录示波器使用方法介绍是德科技(原安捷伦)示波器的使用方法和步骤示波器基

示波器的使用方法及工作原理 - 知乎

示波器的使用方法及工作原理 - 知乎切换模式写文章登录/注册示波器的使用方法及工作原理凡实测控仪器仪表解决方案提供商示波器的使用方法及工作原理示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器的使用方法:  示波器,“人”如其名,就是显示波形的机器,它还被誉为“电子工程师的眼睛”。它的核心功能就是为了把被测信号的实际波形显示在屏幕上,以供工程师查找定位问题或评估系统性能等等。它的发展同样经历了模拟和数字两个时代数字示波器,更准确的名称是数字存储示波器,即DSO(Digital Storage Oscilloscope)。这个“存储”不是指它可以把波形存储到U盘等介质上,而是针对于模拟示波器的即时显示特性而言的。模拟示波器靠的是阴极射线管(CRT,即俗称的电子枪)发射出电子束,而这束电子在根据被测信号所形成的磁场下发生偏转,从而在荧屏上反映出被测信号的波形,这个过程是即时地,中间没有任何的存储过程的。而数字示波器的原理却是这样的:首先示波器利用前端ADC对被测信号进行快速的采样,这个采样速度通常都可以达到每秒几百M到几G次,是相当快的;而示波器的后端显示部件是液晶屏,液晶屏的刷新速率一般只有几十到一百多Hz;如此,前端采样的数据就不可能实时的反应到屏幕上,于是就诞生了存储这个环节:示波器把前端采样来的数据暂时保存在内部的存储器中,而显示刷新的时候再来这个存储器中读取数据,用这级存储环节解决前端采样和后端显示之间的速度差异。  很多人在第一次见到示波器的时候,可能会被他面板上众多的按钮唬住,再加上示波器一般身价都比较高,所以对使用它就产生了一种畏惧情绪。这是不必要的,因为示波器虽然看起来很复杂,但实际上要使用它的核心功能——显示波形,并不复杂,只要三四个步骤就能搞定了,而现在示波器的复杂都是因为附加了很多辅助功能造成的,这些辅助功能自然都有它们的价值,熟练灵活的应用它们可以起到事半功倍的效果。作为初学者,我们先不管这些,我们只把它最核心的、最基本的功能应用起来即可。  示波器的使用  跟万用表类似,要使用示波器,首先也得把它和被测系统相连,用的是示波器探头,20-4所示。示波器一般都会有2个或4个通道(通常都会标有1~4的数字,而多余的那个探头插座是外部触发,一般用不到它),它们的低位是等同的,可以随便选择,把探头插到其中一个通道上,探头另一头的小夹子连接被测系统的参考地(这里一定要注意一个问题:示波器探头上的夹子是与大地即三插插头上的地线直接连通的,所以如果被测系统的参考地与大地之间存在电压差的话,将会导致示波器或被测系统的损坏),探针接触被测点,这样示波器就可以采集到该点的电压波形了(普通的探头不能用来测量电流,要测电流得选择专门的电流探头)。  接下来就要通过调整示波器面板上的按钮,使被测波形以合适的大小显示在屏幕上了。只需要按照一个信号的两大要素——幅值和周期(频率与周期在概念上是等同的)来调整示波器的参数即可在每个通道插座上方的旋钮,就是调整该通道的幅值的,即波形垂直方向大小的调整。转动它们,就可以改变示波器屏幕上每个竖格所代表的电压值,所以可称其为“伏格”调整,如以下两幅对比所示:左是1V/grid,右是500mV/grid,左波形的幅值占了2.5个格,所以是2.5V,右波形的幅值占了5个格,也是2.5V。推荐是将波形调整到右这个样子,因为此时波形占了整个测量范围的较大空间,可以提高波形测量的精度,3所示。通常上方的伏格旋钮外,通常还会在面板上找到一个大小相同的旋钮(不一定像20-6所示的位置),这个旋钮是调整周期的,即波形水平方向大小的调整。转动它,就可以改变示波器屏幕上每个横格所代表的时间值,所以可称其为“秒格”调整,如以下两幅对比所示:左是500us/grid,右是200us/grid,左一个周期占2个格,周期是1ms,即频率为1KHz,右一个周期占5个格,也是1ms,即1KHz。这里就没有哪个更合理的问题了,具体问题具体对待,它们都是很合理的示波器利用狭窄的,由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可以产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。  利用示波器能观察各种不同电信号幅度随时间变化的波形曲线,还可以用它测试各种不同信号的电量,如电压、电流、频率、相位差、调幅度等等。  双踪示波器是由两个通道的y轴前置放大电路、门控电路、电子开关、混合电路、延迟电路、y轴后置放大电路、触发电路、扫描电路、x轴放大电路、z轴放大电路、校准信号电路、示波管和高低压电源供给电路等组成。  观察信号波形时,被测信号UA、UB,通过CHA、CHB两个输入端输入示波器,先分别送到y轴前置放大电路yA和yB进行放大。因通道yA和通道yB都受电子开关的控制,所以UA,UB两信号轮换着输送到后面的混合电路,延迟电路,y轴后置放大电路,加到示波管的垂直偏转板上。  为了适应各种不同的测试需要,电子开关可有五种不同的工作状态,即CHA、CHB、交替、断续、ADD等。这五种工作状态由显示方式开关来控制。  当显示方式开关置于交替位置时,电子开关为一双稳态电路。它受由扫描电路来得闸门信号控制,使得y轴两个前置通道随着扫描电路。触发方式有内触发,外触发两种,由触发源选择开关来选择,当该开关置于内的位置时,触发信号来自经y轴通道送入的被测信号,当该开关置于外的位置时,触发信号是由外部送入的。这个信号应与被测信号的频率成整数比的关系。示波器使用中,多数采用内触发工作方式。  扫描电路产生扫描信号(锯齿波电路)。通过x轴选择开关接到x轴放大电路,经放大后送到示波器的x轴偏转板上。  Z轴放大电路对荧光屏上光点辉度起着调节的作用,抹去不必要显示的光点轨迹。当扫描电路的闸门信号来到z轴放大电路时,z轴放大电路便输出正向的增辉脉冲信号,加至示波器的控制极。这就是说,在扫描信号的正程时,荧光屏上的光点得以增辉,在电子开关的转换过程中,电子开关电路将输出脉冲信号也加至z轴放大电路,此时z轴放大电路便输出负向脉冲信号,加至示波器的控制极。这样在电子开关的转换过程中,就消除了两通道交替工作时的过度光点,以提高显示波形的清晰度  校正信号产生电路产生一个一定频率和幅度的矩形信号。它是作校正y轴放大电路的灵敏度和x轴的扫描速度之用的。  高低压电源,其中高压是供给示波管显示系统的。低压供给示波器各级电路。文章编辑:北京凡实测控技术有限公司发布于 2018-08-21 14:31示波器工作原理物理学​赞同 197​​12 条评论​分享​喜欢​收藏​申请

示波器工作原理、基本功能、示波器与频谱仪的区别-电子工程世界

示波器工作原理、基本功能、示波器与频谱仪的区别-电子工程世界

|首页|

电子技术|

电子产品应用|

电子头条|

社区|

论坛

测评

博客

电子技术视频|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

|首页|

电子技术|

电子产品应用|

电子头条|

论坛|

大学堂|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

测试测量

测试测量>信号源与示波器> 示波器工作原理、基本功能、示波器与频谱仪的区别

示波器工作原理、基本功能、示波器与频谱仪的区别

最新更新时间:2017-09-03来源: eefocus关键字:示波器  工作原理  基本功能  频谱仪

手机看文章

扫描二维码随时随地手机看文章

收藏

评论

分享到

微博

QQ

微信

LinkedIn

  示波器是一种用途十分广泛的电子测量仪器,是电子工程师的眼睛,它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器的首要条件:准确的显示波形,保证信号完整性测量。  示波器的功能:用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。示波器工作原理  示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。  首先示波器从设计原理上分为模拟示波器和数字示波器两种,最早出现的示波器为模拟示波器,而今由于带宽等问题,模拟示波器已经渐渐被淘汰。那模拟示波器的原理是怎么样的呢?下面这张图就可以很好的说明:  模拟示波器内部会产生周期性的锯齿波信号来控制银光平电子枪的水平偏转,被测的电压信号经过放大后控制荧光屏电子枪的垂直偏转。这样一来,光斑或者亮线就清楚的显示在荧光屏上了,就是波形嘛。  从设计理念上来分析,模拟示波器有许多不可比拟的好处,例如信号波形不会丢失、不存在死区时间等。而数字示波器虽然一开始会存在这些问题,但随着现在电子技术的大力发展,这种瑕疵已经变得越来越小。那数字示波器的设计原理又是怎么样的呢?  波形首先要通过探头,经由前端的放大器进行放大,之后由模数转换单元进行转换,进而存储到采集内存中,然后显示到显示器上。  在这一整个过程中,波形并不是实时呈现在屏幕上的,而是经过采集内存之后又呈现在波形上的。因此如果整个采样和转换时间较长的话,就会产生较大的死区时间,所以在死区时间内的波形就无法观察到了。这也就是为什么很多人至今仍然坚持认为数字示波器不如模拟示波器好的原因所在。  模拟示波器的优点毋庸赘述,实时性好、原理简单、价格便宜。但是本身的仪器原理也包含了终将会被时代抛弃的硬伤。大抵有以下几条:  一、带宽有限:这绝对是致命硬伤。模拟示波器的输入信号是放大后直接控制CRT显示屏的电子枪偏转。虽然放大器的带宽可以越来预高,但是CRT电子枪的偏转速度是有限的,对于高频信号,电子枪的速度跟不上信号变化。因此,当前模拟示波器带宽真的很难做上去。  二、无法存储和分析:很多老工程师非常清楚,用模拟示波器保存波形是要拿相机拍照的,如果要测幅度、周期、上升时间,只能手动去搞。要是想测相位差、功率这些,对于数字示波器这种只是勾选一下就能完成的事情,对于模拟示波器简直是体力活。  三、触发能力太弱:基本只能边沿触发吧。想脉宽触发?斜率触发?根本不可能!更不要开个图形来做模板触发这种脑洞大开的触发方式了。  四、性能不稳定:毕竟是大量的模拟器件,时间长了之后指标就不稳了,温漂也要比数字示波器严重的多。在20世纪80年代开始,数字示波器逐渐崭露头角。特别是随着高速ADC芯片和数字处理技术的发展,数字示波器在带宽、触发、分析、显示方面全面超越了模拟示波器。现在市面上在售的示波器基本全都是数字示波器了。  这里要强调的一点仍然是死区时间,这依赖的是数字示波器后面的处理和显示速度。虽然在现有的技术水平下仍然无法做到实时处理,但是处理的速度越快,丢失的波形就越少,有关这方面性能是指标叫做——波形刷新率。对于200MHz带宽示波器来说,几乎所有的品牌都会配1G的采样率,但是波形刷新率是更为重要的参数之一。波形刷新率越高,波形观测的死区时间就小了好多。  不管怎么说,数字示波器取代模拟示波器都是大势所趋。在电子技术飞速发展的阶段,相信模拟示波器的价格优势也会慢慢消失殆尽。示波器基本功能  1、可以测量直流信号、交流信号的电压幅度  2、可以测量交流信号的周期,并以此换算出交流信号的频率。  3、可显示交流信号的波形。  4、可以用两个通道分别进行信号测量。  5、可以在屏幕上同时显示两个信号的波形,即双踪测量功能。此功能能够测量两个信号之间的相位差,和波形之间形状的差别。  示波器面板旋钮的功能  1、 扫描速度旋钮,可以改变示波器扫描线从左向右移动的速度。  2、 电压选择旋钮,可以改变输入电压使扫描线在示波器屏幕Y轴方向的偏转幅度。  3、 上下调整旋钮、左右调整旋钮,可以改变扫描线在屏幕中上下左右两个方向的位置。  4、 电压标准旋钮向顺时针方向达到最大值的状态为标准状态。其它位置为非标准状态。  5、 扫描速度标准旋钮向顺时针方向达到最大值的状态为标准状态。其他位置为非标准状态。  6、 为同步旋钮,它能使示波器的波形稳定下来。  7、 功能选择键为CH1通道选择、CH2通道选择、双踪功能选择。  8、 功能选择键为CH1信号同步、CH2信号同步。  9、 为测量功能选择开关,能使测量处与交流DC、直流AC、和接地GHD三种状态。当处于直流DC状态时,无论是直流还是交流信号都能够进行测量。当处于交流AC状态时,示波器测量接口的内部被串上的一个电容,此时信号中的直流成分被电容阻隔,而交流成分却可以通过电容而被测量。  当处于接地状态的时,示波器的测量接口在示波器内部与地短路,此时外部信号不能进入示波器。  10、为亮度调整旋钮,可以调整图像的亮度。  11、为聚焦调整旋钮,可以使图像变得精细。示波器与频谱仪的区别  从实时带宽、动态范围、灵敏度和功率测量准确度四个方面比较了示波器和频谱仪的分析性能指标的区别。  1 实时带宽  对于示波器来说,带宽通常是其测量频率范围。而频谱仪则有中频带宽、分辨带宽等带宽定义。这里,我们以能对信号进行实时分析的实时带宽作为讨论对象。  对于频谱仪来说,末级模拟中频的带宽通常可以作为其信号分析的实时带宽,大多数的频谱分析的实时带宽只有几兆赫兹,通常较宽的实时带宽通常为几十兆赫兹,当然目前带宽最宽的FSW频谱仪可以达到500兆赫兹。而示波器的实时带宽为其实时取样的有效模拟带宽,一般为数百兆赫兹,高的可达数千兆赫兹。  这里需要指出的是,大多数的示波器在垂直刻度设置不同时,其实时带宽可能并不一致,在垂直刻度设置到最灵敏时,其实时带宽通常会下降。  从实时带宽来说,示波器普遍优于频谱仪,这对于某些超宽带信号分析尤其有好处,特别是在调制分析上有着无可比拟的优势。  2 动态范围  动态范围指标因其定义不同而有所不同,很多情况下,动态范围被描述为仪器测量最大信号和最小信号的电平差值。当改变测量设置时,仪器测量大信号和小信号的能力是不一样的,例如频谱分析仪在衰减设置不一样的情况下,其测量大信号所带来的失真是不一样的。在这里,我们讨论仪器能够同时测量大小信号的能力,即在不改变任何测量设置的情况下,示波器和频谱仪在合适设置情况下的最佳动态范围。  对于频谱仪来说,在不考虑相位噪声等近端噪声和杂散情况下,平均噪声电平、二阶失真、三阶失真是制约动态范围的最主要因素,以主流频谱仪的技术指标计算,其理想动态范围约为90dB(受二阶失真限制)。  大多数的示波器由于受其AD有效取样位数和噪声底的限制,传统示波器的理想动态范围通常不超过50dB。(对于R&S RTO示波器,在100KHz RBW时,其动态范围可高达86dB)  从动态范围来看,频谱仪要优于示波器。但这里要指出的是,这对于常在信号的频谱分析来说确实如此,然而示波器的频谱是同一帧数据,频谱仪的频谱大多数情况下都不是同一帧数据,因而对于瞬变信号来说,频谱仪可能无法测量到。而示波器发现瞬变信号(信号满足动态范围的情况下)的概率要大得多。  3 灵敏度  这里讨论的灵敏度,是指示波器和频谱仪所能测试到最小信号的水平。这个指标与仪器设置紧密相关。  对于示波器而言,示波器在Y轴设置至最灵敏档时,通常为1mV/div时示波器所能测试到最小信号,抛开端口不匹配等因素来看,示波器的信号通道产生的噪声以及轨迹不稳定带来的噪声是制约示波器灵敏度的最重要因素。  4 功率测量准确度  对于频域分析来说,功率测量准确度是非常重要的技术指标。无论是示波器还是频谱仪,对功率测量准确度的影响量都是非常多的,下面分别列出其主要的影响量:  对于示波器来说,功率测量准确度的影响量有:端口不匹配引起的反射、垂直系统误差、频率响应、AD量化误差、校准信号误差等。  对于频谱仪来说,功率测量准确度的影响量有:端口不匹配引起的反射、参考电平误差、衰减器误差、带宽转换误差、频率响应、校准信号误差等。  另外,在频率范围内,示波器的频率响应指标也是很好的,4GHz范围内不超过0.5dB,从这点来说,示波器甚至优于频谱仪的性能。  总的来说,示波器与频谱仪在频域分析性能上各有所长,频谱仪在灵敏度等技术指标上更胜一筹,示波器在实时带宽上较频谱仪更为出色。在测量不同类型的信号时,可根据测试需求和仪器的不同技术特点进行选择。

关键字:示波器  工作原理  基本功能  频谱仪

编辑:什么鱼 引用地址:示波器工作原理、基本功能、示波器与频谱仪的区别

上一篇:泰克示波器助您一次通过EMI一致性测试

下一篇:一些典型的电源测序应用,让你少走弯路

推荐阅读最新更新时间:2023-10-12 12:49

泰克示波器在电源纹波测试的应用方案

示波器作为电子工程师必备的仪器,它的用途也是十分广泛的,比如纹波测试,检查频率,查看信号质量,测量上升时间、下降时间和过冲,并行总线解码分析等等,其中电源纹波测试是非常热门的应用,今天安泰测试就给大家介绍一下电源纹波测试的意义及方案。 测试要求及意义: 纹波是由于直流稳定电源的电压或电流波动而造成的一种现象,它表现为频率高于工频的类似正弦波的谐波,以及宽度很窄的脉冲波。 对于现代的复杂电子系统,除了需要 AC-DC 的电源外,更多的甚至多级电源轨的系统来说,DC-DC 的纹波噪声也越来越重要,由于纹波以及噪声的存在,会导致很多危害,影响电路的正常工作,所以,一定要准确测量电源的纹波噪声数值 。 纹波噪声的基本测量工具是

[测试测量]

电子示波器结构方框图分析

  电子示波器用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测   按照信号的不同分类   模拟示波器采用的是模拟电路(示波管,其基础是电子枪)电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打到屏幕上。屏幕的内表面涂有荧光物质,这样电子束打中的点就会发出光来。   数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是

[测试测量]

LOTO示波器:秒测UI特性曲线(二极管为例)

本文章主要介绍用LOTO示波器、信号发生器模块和电流差分模块测二极管UI特性曲线的案例,当然还可以用该套设备测三极管、场效应管、稳压管和一般的PN结。 图1为PN结的UI特性曲线,可以看到,当电压U增大到一定的值时,流过PN结的电流会迅速变化,我们称这个电压为导通电压,不同材料的导通电压不同,硅管的0.7V,锗管的0.3V,用途有整流用的,有开关用的,各种二极管,它的曲线不太一样,当PN结两端的电压加到零点几伏的时候,它两端的电压就不会继续升高了,只是电流在增大。 图1. 二极管UI特性曲线 PN结反向特性:当PN结两端加反向电压时,反向电压值较小时,电流几乎为零,此时的电流为反向饱和电流,当反向电压增加到一定值时,电

[测试测量]

ADC/DAC(3)- 数字示波器中ADC的选用

自己动手做一个信号发生器和示波器非常重要,不仅可以深刻理解测量仪器的工作原理、关键技术指标,还可以将书本上学过的模拟电路、数字逻辑乃至嵌入式系统全部串起来,从系统层面对各个部分的功能以及构成有更真切的认识,因此苏老师觉得这两个项目应该是所有电子工程师都要动手做一遍的基础入门项目。 高速ADC是数字示波器的核心部件,今天关于ADC应用的文章就结合我们摩尔吧/硬禾实战营的一个实际项目 - 100Msps的数字示波器的制作来做一个简单的案例分析,数字和处理部分将在将来的文章中具体分析,今天集中在模拟部分: 我们的项目对模拟部分的主要指标要求如下: 单通道、100Msps采样率 模拟带宽20MHz,输入电压的范围 - -10V

[测试测量]

示波器上的触发电平如何选择?

触发是数字示波器区别于模拟示波器的最大特征之一。数字示波器的触发功能非常地丰富,通过触发设置使用户可以看到触发前的信号也可以看到触发后的信号。对于高速信号的分析,其实很少去谈触发,因为通常是捕获很长时间的波形然后做眼图和抖动分析。触发可能对于低速信号的测量应用得频繁些,因为低速信号通常会遇到很怪异的信号需要通过触发来隔离。 示波器上的触发电平 直观讲,触发电平是使示波器进行扫描的信号,一般示波器打开都处于自动触发,像测连续的重复信号时,比较方便。但测一些特定位置的数据,就需要精确触发了。触发电平格式又分为上升沿、下降沿、还有一些其它信号,比如I2C 串口 数据,进行精确触发,这是利用数据特征触发的。还有就是使用外触发,可以

[测试测量]

示波器基础系列之七 —— 关于示波器的RIS模式和Roll模式

一, RIS模式去年在介绍力科示波器家族时,我常说力科公司可以提供100MHz 100GHz的示波器,现在我介绍时会说力科公司可以提供60MHz 100GHz的示波器。我们的产品线在向低带宽示波器市场延伸,但同时我们保持了世界上最高带宽的示波器 100GHz的示波器。 T公司或A公司的示波器最高带宽才80GHz。 这时候很多工程师会瞪大眼睛: 这么高的带宽? 怎么采样?其实我们知道,100GHz的带宽的示波器是采样示波器,采样示波器的基本采样原理和我们今天要介绍的RIS模式下的采样原理类似。(关于采样示波器和实时示波器的区别我们另文介绍。)

RIS模式即随机内插采样模式(Random Interleaved Sampling M

[测试测量]

独特设计更强功能,横河发布混合信号示波器DLM3000

横河测试测量宣布推出最新一代混合信号示波器DLM3000,将于10月30日向全球市场发售。 DLM3000系列示波器具有与前一代产品DLM2000相似的独特外观与操作按键布局,但内部固件与硬件已全部重新设计并升级,集成了最新的触摸屏操作、SSD存储与高速信号处理和传输能力于一体,沿袭了以往横河示波器一直具有的稳定、便携和强大功能,强化了测试速度与异常信号捕捉能力,改进了输入端子的抗噪声特性,提升了动态范围。因此,该系列示波器尤为适合日新月异的汽车、新能源、电力电子等行业的研发。再结合横河公司示波记录仪与功率分析仪产品,能够为上述领域的研发提供完整的测试测量解决方案。 研发背景 近年来,人们越来越关注可持续发展的主

[测试测量]

发动机冷却系统分类及工作原理

1.冷却系统的作用 发动机将化学能转化为机械能的过程中,将释放出大量的热量,发动机本身将被加热,需要冷却系统使其在各个运行工况都保持在适当的温度单位内。冷却系统要保障发动机不能过热也不能过冷,并且需要起动后快速暖机,达到正常的工作范围。发动机正常运行时最高燃烧温度可达2500℃,即使怠速或中速时,燃烧室温度也可达1000℃。 2.发动机冷却系统分类 按照冷却介质的不同可以分为风冷和水冷两种。发动机的冷却系统通常以水冷却为主,使用气缸水道内的循环水冷却,把水道内受热的水引入散热器(水箱),通过风冷却后再返回到水道内。 常用的水冷介质是乙二醇与水按照一定比例混合的液体(并添加一定量的防锈剂和泡沫抑制剂等),不仅可以提高沸点温度,

[嵌入式]

热门资源推荐

热门放大器推荐

更多

 电气控制与PLC_第2版

 电气控制与可编程序控制器应用技术(FX_3U系列)

 电气控制与西门子S7-300PLC编程技术

 电子电路识图、应用与检测 (韩雪涛)

 开关电源仿真与设计基于SPICE 第2版 高频电路基础 线性系统理论 (第2版) python从入门到实践

 MCP6N16-010E/MS

 LT1497CS#TRPBF

 8203602PA

 AD8131ARM

 TC1025EOA713

 LM110JG

 INA110SG-BI

 MAX9963AJCCQ+D

小广播

热门活动换一批更多

■报名赢【养生壶、鼠标】等|STM32 Summit全球在线大会邀您一起解读STM32方案

■有奖征文:邀一线汽车VCU/MCU开发工程师,分享开发经验、难题、成长之路等

■泰克 MSO6B 探索营:技术指标大挑战,闯关赢好礼

■有奖直播:ADI 惯性 MEMS 传感器的应用价值与选型

■MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~

■村田在线课堂:移动篇

■罗姆有奖直播|从0到1,带你了解电机及其驱动 开始报名啦~

最新测试测量文章

【做信号链,你需要了解的高速信号知识(一)】为什么要使用LVDS或JESD204B标准?信号链是连接真实世界和数字世界的桥梁。随着ADC采样率和采样精度的提升,接口芯片的信号传输速度也越来 ...

如何通过接地摇表测量接地电阻?电力系统中电气设备接地的目的是为了保证人身和电气设备的安全以及设备的正常工作。接地电阻的测量通过接地电阻表(又称为接地电阻测试仪) ...

FLIR推出声学成像仪,助力快速定位气体泄漏与机械故障FLIR,这家以热成像技术著称的公司,最近宣布推出了一款新型的成像仪,它能够让不可见的事物变得可见。不过,这一次,FLIR并不是利用热数据 ...

【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事构建测试系统时,可能需要测量多个信号,此时仅依靠一个示波器的可用通道可能无法完全捕获所有信号。要增加测试系统中的示波器通道数量,常 ...

是德科技发布无线测试平台, 加速Wi-Fi 7性能测试是德科技发布无线测试平台, 加速Wi-Fi 7性能测试•一站式解决方案能够仿真 Wi-Fi 设备和网络流量,全面覆盖最新 IEEE 802 11be 标 ...

e络盟开售NI LabVIEW+套件,加速测试产品上市

是德科技推出领先的基准测试解决方案以加快部署人工智能基础设施

客户案例 | 多通道数模转换器ADC动静态参数测试解决方案

是德科技与 Intel Foundry 强强联手,成功验证支持 Intel 18A 工艺技术的电磁仿真软件

更多精选电路图

电容降压限流式电源

易制的LM386集成电路信号寻迹器电路

一个带LDR的轻型围栏电路图

如何增强基本低通滤波器的性能

6晶体管Tilden H桥电路分析

短波AM发射器电路设计图

换一换

更多

相关热搜器件

 NJM2830U1-33-TE1

 NJM2884U1-33-TE1

 PDZVTFTR4.3B

 LTC2636IDE-LZ12

 2200HGH1508F3FB

 CRCW0805909RFKEA

 BA4-B2-36-635-52A-C

 TLP705TPF

 C0603X122M8JACTU

 HV2221FG-G M931

 HE0820400000G

 Y16070R33200F0W

 SIT8208AI-23-28E-12.000000Y

 TW-17-03-G-D-170-140

 DA8043

 RM422-220-781-9713

 CA3100E20-3P-B-05

 MTMS-115-57-L-S-430

 TKJA0S13N98LPN

 72348-804HLF

 EUHA18-01.8432M-I2

 KL32CTE181K

 VJ1210Y154KLAAJ5G

 402S48N182JV4E

 MCA1206HE1800BP500

 CX12A-A2B1C340-25.999D18

 PTN0402E1111DSTF

 RC6432J221AS

 ZDX1FM1STOA

 PEG08DS-LART420

 800-012-02C12-3FY

 76030G-17N-2PD

 BSSH-135-S-16-G

 M80-4T13601F1-07-301-00-321

 PWC0805-36R0F

 TC02G21R5DT

 RNR50J2372FRB1431

 RNR60C1820BPM76

 0015912255

 NRSN04I2F76R8TRF

 VM38E3-170.000-2.0/0+60

 SIP-4788SD-02-2341BF

 W5RS-64Y-M/BL

 ZMV-03A150-L16KWB5

 SL0A-02-2050-BAPB

 SQS16B1242FQLF7

 51760-11706810AALF

 AZ21001-1AE-110DE

 ABM81-12.000MHZ-10-1-T

 P-2010K2001BBT3

更多热门文章

智能座舱需要哪些电子元器件?

几种常见物位测量仪表的原理及适用性

【汇编优化】之ARM32与AARCH64指令集优化总结

德国伍珀塔尔大学选择泰克开发6G技术

业内:折叠手机价格加速下跌 发行半年二手机降40%

华为公布电动汽车驱动系统专利:可提升汽车里程及驱动灵活性

蔚来制造电池,会否打响主机厂反抗电池企业的第一枪?

埃万特于2023年中国国际橡塑展(Chinaplas 2023)展示最新解决方案,拥抱循环经济

stm32-GPIO 模式配置如何?

更多每日新闻

800V架构下,给连接器带来了哪些“改变”?

中国智驾市场「迷雾」,洗牌开始

一文了解什么是BEV感知?

汽车网络安全误区

一文详解智能座舱舱内感知技术

超强性价比!魔视智能发布全新商用车前装AEB系统

宝马集团将在照明系统中采用ADI技术、欧宝公布汽车照明技术最新突破·······

欧洲已经出手!触控大屏的“歪风邪气”该刹车了

智驾新突破!长城真无图NOA技术视频震撼曝光!展现复杂路况应对

三星SDI公布最新固态电池技术,充电速度及使用寿命均有惊人突破

更多往期活动

TI 无线产品调查问卷,380份好礼等你领!

帮助他人,成就自己:EEWORLD月度问答榜(第4期)

【MPS有奖活动】分享【PCB设计、焊接】问题或经验

庆元旦发热贴,EEWORLD好礼相送!

TE有奖活动|如何有效应对当下测试测量领域的挑战

任选下载有礼|《新概念模拟电路》全五册合集/《ADI 参考电路合集》

是德科技第二届示波器感恩月之买一送一

【读书月】读一本RT-Thread技术好书,写下你的读书笔记

厂商技术中心

TI 技术论坛

TI 在线培训

Qorvo 射频技术研习社

随便看看

贴片式元器件的拆卸、焊接技巧

硬件电路调试测试测量中的陷阱(转)

从系统角度理解设计工程师

单片机定时器与AD采集

有关LPC812最小系统版的问题

版主们!从06月开始,每月定时发放芯币

如何编译这个cm7到u8500去

1

IAR for AVR中嵌入汇编,在汇编代码中如何引用C变量?

【SC8905 EVM测评】+放电输出调压

About Us

关于我们

客户服务

联系方式

器件索引

网站地图

最新更新

手机版

站点相关:

信号源与示波器

分析仪

通信与网络

视频测试

虚拟仪器

高速串行测试

嵌入式系统

视频教程

其他技术

综合资讯

词云:

1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室

电话:(010)82350740

邮编:100190

电子工程世界版权所有

京B2-20211791

京ICP备10001474号-1

电信业务审批[2006]字第258号函

京公网安备 11010802033920号

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved

示波器 - 维基百科,自由的百科全书

示波器 - 维基百科,自由的百科全书

跳转到内容

主菜单

主菜单

移至侧栏

隐藏

导航

首页分类索引特色内容新闻动态最近更改随机条目资助维基百科

帮助

帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科

搜索

搜索

创建账号

登录

个人工具

创建账号 登录

未登录编辑者的页面 了解详情

贡献讨论

目录

移至侧栏

隐藏

序言

1示波器综述

开关示波器综述子章节

1.1外观

1.2分类

1.3数字示波器基本指标

1.4发展趋势

1.5世界主要厂商

2工作原理

3模拟示波器

开关模拟示波器子章节

3.1X-Y模式

4数字示波器

5混合信号示波器

开关目录

示波器

64种语言

AfrikaansالعربيةAsturianuAzərbaycancaБеларускаяБеларуская (тарашкевіца)БългарскиবাংলাBosanskiCatalàČeštinaCymraegDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiFrançaisGalegoעבריתहिन्दीHrvatskiMagyarBahasa IndonesiaÍslenskaItaliano日本語ქართულიҚазақша한국어LatinaLietuviųLatviešuမြန်မာဘာသာNederlandsNorsk nynorskNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийScotsSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaSlovenščinaShqipСрпски / srpskiSvenskaதமிழ்ไทยTürkçeУкраїнськаاردوTiếng Việt吴语粵語

编辑链接

条目讨论

大陆简体

不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體

阅读编辑查看历史

工具

工具

移至侧栏

隐藏

操作

阅读编辑查看历史

常规

链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目

打印/导出

下载为PDF可打印版

在其他项目中

维基共享资源

维基百科,自由的百科全书

此条目没有列出任何参考或来源。 (2020年1月11日)维基百科所有的内容都应该可供查证。请协助补充可靠来源以改善这篇条目。无法查证的内容可能会因为异议提出而被移除。

此条目需要精通或熟悉相关主题的编者参与及协助编辑。 (2017年2月22日)请邀请适合的人士改善本条目。更多的细节与详情请参见讨论页。

示波器

示波器(英语:oscilloscope)是一种能够显示电压信号动态波形的电子测量仪器。它能够将时变的电压信号,转换为时间域上的曲线,原来不可见的电气信号,就此转换为在二维平面上直观可见光信号,因此能够分析电气信号的时域性质。更高级的示波器,甚至能够对输入的时间信号,进行频谱分析,反映输入信号的频域特性。

示波器综述[编辑]

外观[编辑]

一个典型的示波器通常是盒状屏幕,有多个输入连接,示波器至少包括探头、显示器和控制面板三部分。电压信号通过探头连接到示波器的输入端口,经过处理之后的波形就显示在显示器上。显示器一般为长方形,偶尔也有圆形,在表面标记有垂直的网格坐标。传统的示波器控制面板一般在示波器前部,分布有多个旋钮、按钮或开关,用于调整参数,目前最新的示波器——平板示波器采用全触控屏幕操作,外形如同iPad。

分类[编辑]

示波器主要可以分为模拟示波器与数字示波器两类。

模拟示波器主要基于阴极射线管,打出的电子束通过水平偏置和垂直偏置系统,打在屏幕的荧光物质上显示波形。

数字示波器主要是通过ADC将模拟数字离散化并存入存储器,通过CPU或专用芯片进行处理后在屏幕上进行显示。原有的数字存储示波器对波形的捕获率较慢,随着技术及专用芯片的发展,现有数字存储示波器的波形捕获率已经可以达到每秒100万次,高于模拟示波器的40万次。 数字示波器又可分为

数字存储示波器(DSO,Digital Storage Oscilloscope):将信号数字化后再建波形,具有记忆、存储被观测信号的功能,可以用来观测和比较单次过程和非周期现象、低频和慢速信号,以及不同时间不同地点观测到的信号。

数字荧光示波器(DPO,Digital Phosphor Oscilloscope):通过多层次辉度或彩色可显示长时间内信号。

混合信号示波器(MSO,Mixed Signal Oscilloscope):把数字示波器对信号细节的分析能力和逻辑分析仪多沟道定时测量能力组合在一起,可用于分析数模混合信号交互影响。

数字示波器基本指标[编辑]

带宽、采样率和存储深度是示波器的三大技术指标。示波器的带宽定义为信号衰减3dB时的信号频率。若一台示波器带宽不够会导致看到的信号失真,测试不准确。带宽指标主要体现在衰减器与放大器的指标。实时采样率体现出示波器的ADC的性能。采样率通常要大于等于带宽的4倍。存储深度影响观测时间的长短,另外也会影响到示波器的采样率。因为存储深度=采样率×观测时间,若观测时间较长(与水平观测时间相关),则采样率会下降。除此之外,波形捕获率和示波器响应速度,触发条件的多少,底噪的情况,使用的方便性,及扩展性也体现了示波器的性能。

带宽选择实例:

已知条件:示波器主机1GHz,探头配置1.5GHz,被测信号200MHz(上升时间500ps)。

示波器参数

参数值

示波器上升时间

0.35/1GHz = 350ps

探头上升时间

0.35/1.5GHz = 233ps

整个测量系统上升时间

350

2

+

233

2

{\displaystyle {\sqrt {350^{2}+233^{2}}}}

= 420ps

整个测量系统实际带宽

0.35/420 = 833MHz

实测信号所得上升时间

420

2

+

500

2

{\displaystyle {\sqrt {420^{2}+500^{2}}}}

= 653ps

实际测量误差

(653 – 500) / 500 = 30.6%

发展趋势[编辑]

高性能与通用是示波器发展的两个趋势。体现高性能的例子是安捷伦科技的63GHz模拟带宽、160GSa/s采样的实时示波器,同时具有低噪声和高输入动态范围的特性,美国力科公司宣布了65GHz模拟带宽、160GS/s实时采样率、4~40沟道的任意沟道示波器系统,大幅的优化了示波器的沟道选择性。另一个趋势是通用,将更多的功能集成到示波器中,常见的有将逻辑分析功能集成,形成混合型号示波器;将协议分析功能集成,最近安捷伦又将信号源集成到示波器中。力科也在全系列示波器中加上逻辑模块,随着技术的发展,也许示波器会集成越来越多的功能。

世界主要厂商[编辑]

美国:泰克(Tektronix)、是德科技(Keysight,原安捷伦(Agilent)的电子仪器部门,再之前则是惠普(HP)的仪器部门)、福禄克(Fluke)、力科(LeCroy)、国家仪器(National Instruments)

荷兰:飞利浦(Philips)(90年代其仪器部门与美国福禄克合并)

德国:罗德与施瓦茨(R&S,Rohde & Schwarz,原HAMEG)

英国:古尔德(GOULD,2014年结束营业)

日本:日立(Hitachi)、菊水电子(KIKUSUI Electronics)、岩崎通信机(IWATSU ELECTRIC)、建伍(Kenwood/Trio)、利达(Leader)

中国大陆:普源(Rigol)、鼎阳(Siglent)

台湾:固纬(GWInstek)

工作原理[编辑]

示波器主要由电源系统、同步系统、水平偏向系统、垂直偏向系统、延迟扫描系统、显示系统和标准信号源等部分组成。

模拟示波器[编辑]

模拟示波器有多种工作模式。

X-Y模式[编辑]

大多数现代的模拟示波器都有多个电压输入,可以用来绘制一个变化的电压与另一个电压的对比图。这对于绘制二极管等组件的I-V曲线(电流与电压的特性)以及李萨如图形特别有用。这种曲线是一种典型的跟踪多个输入信号之间相位差异的方法,在广播工程中经常被用来绘制左右立体声沟道,以确保立体声发生器正确校准。

数字示波器[编辑]

数字科技的发达让示波器从传统的模拟式发展到了数字式。数字系统给示波器带来了大量强大的特性。

优于传统的示波器之处:

光明大屏幕彩色区分多重痕迹。

等效时间采样和平均跨连续样品或扫描导致更高的分辨率降至第五。

峰值检测。

默认触发。

易潘变焦和多个存储痕迹让初学者工作无触发。

大多数字式示波器的缺点是波形更新的速度过慢。但最近几年也有数字示波器的波形捕获率超过模拟示波器

混合信号示波器[编辑]

混合信号示波器(MSO)有两种输入,一小部分(通常是2个或4个)的模拟沟道,更多(通常为16个)的部分是属于数字沟道;即,含逻辑分析仪的数字示波器,不过逻辑分析仪的功能非常弱,只做简单时序分析和串行解码用,无法和传统逻辑分析仪的强大功能相比,适合只需简单功能的应用。最新的混合信号示波器加入其它仪器元素,除示波器和逻辑分析仪外,还有串行信号解码分析,任意波形发生器,数字电压表功能。

维基共享资源上的相关多媒体资源:示波器

查论编电子仪器与测量设备(英语:List of electrical and electronic measuring equipment)测量

电流表

电容计(英语:Capacitance meter)

失真计(英语:Distortionmeter)

电能表

计频器(英语:Frequency counter)

检流计

电感电容电阻测试仪

微波功率仪(英语:Microwave power meter)

多用表

高阻计(英语:Megohmmeter)

欧姆计

峰值仪(英语:Peak meter)

音量峰值仪(英语:Peak programme meter)

声电位差计(英语:Psophometer)

测Q计(英语:Q meter)

时域反射仪(英语:Time-domain reflectometer)

时间数字转换器(英语:Time-to-digital converter)

晶体管测试器(英语:Transistor tester)

电子管试验器(英语:Tube tester)

瓦特计(英语:Wattmeter)

电压表

音量计(英语:VU meter)

分析

总线分析仪(英语:Bus analyzer)

逻辑分析仪

网络分析仪(英语:Network analyzer (electrical))

示波器

信号分析仪(英语:Signal analyzer)

频谱分析仪

波形监控器(英语:Waveform monitor)

向量示波器(英语:Vectorscope)

视频示波器(英语:Videoscope)

产生源

任意波形发生器(英语:Arbitrary waveform generator)

数字波形发生器(英语:Digital pattern generator)

信号发生器

函数发生器

影像信号发生器(英语:Video-signal generator)

查论编实验室设备 通用设备加热器干燥器

酒精灯

本生灯

干燥器

加热包(英语:Heating mantle)

加热板(英语:Hot plate)

热风烘箱(英语:Hot air oven)

麦克尔-费雪灯

特克卢喷灯

实验用水槽(英语:Laboratory water bath)

真空干燥箱(英语:Vacuum dry box)

混合器搅拌器

恒化器(英语:Chemostat)

均质机(英语:Homogenizer)

液哨(英语:Liquid whistle)

电磁搅拌器

研钵

摇床

超音波振荡器(英语:Sonication)

静态混合器(英语:Static mixer)

玻璃棒

试管震荡器(英语:Vortex mixer)

洗瓶

搅拌棒

脚架夹钳固定

烧杯夹

持夹器(英语:Clamp holder)

三脚架

滴定管夹

延伸夹钳

砂箱夹

漏斗架

铁圈

弹簧夹

铁架台

螺旋夹

试管夹

试管架

石棉网

实验室沥水架(英语:Lab drying rack)

容器存储设备

琼脂平板

保温瓶

恒温箱(英语:Incubator (culture))

无菌操作台(英语:Laminar flow cabinet)

微量滴定板(英语:Microtiter plate)

培养皿

微孔板(英语:Picotiter plate)

冰箱

称量舟

称量皿

培养箱

其它

抽滤管

灭菌釜

天平刷

软木穿孔器(英语:Cork borer)

坩埚

滤纸

锉刀

钳子(英语:Forceps)

离心机(英语:Laboratory centrifuge)

显微镜

泥三角

分光光度计

木棒(英语:Splint (laboratory equipment))

橡皮塞(英语:Laboratory rubber stopper)

刮刀(英语:Scoopula)

刮勺(英语:Spatula)

试管刷

钢丝刷(英语:Wire brush)

接种针(英语:Inoculation needle)

接种环(英语:Inoculation loop)

软木塞

 玻璃器皿设备

迪安-斯塔克设备

索氏提取器

启普发生器

瓶罐容器

波士顿圆形瓶

比重瓶

冷凝管

冷指(英语:Cold finger)

李必氏冷凝管

蛇形冷凝管

器皿

蒸发皿

培养皿

表面皿

烧瓶

布氏烧瓶

真空保温瓶

锥形瓶

冯巴赫瓶(英语:Fernbach flask)

缩颈烧杯(英语:Fleaker)

平底烧瓶

曲颈甑

圆底烧瓶

舒伦克瓶

容量瓶

漏斗

布氏、赫式漏斗

滴液漏斗(英语:Dropping funnel)

分液漏斗

量测器具

滴定管

锥形量筒(英语:Conical measure)

分光液槽

量气管(英语:Eudiometer)

量筒

奥士华黏度计(英语:Viscometer)

移液器

滴管

玻璃管(英语:Glass tube)

沸腾管

干燥管

克拉基管(英语:Cragie tube)

灼热管(英语:Ignition tube)

核磁共振管(英语:NMR tube)

试管

熔点测定管

长颈漏斗

其它

烧杯

气体注射器(英语:Gas syringe)

试样瓶(英语:Vial)

 分析化学仪器成分分析

自动分析仪

碳氢氮元素分析仪(英语:CHN analyzer)

比色计

感应耦合等离子仪

气相色谱仪

高效液相色谱仪

质谱仪

酸碱指示剂

pH计

显微镜

扫描电子显微镜

穿透式电子显微镜

热化学仪器

热量计

差示扫描量热计

熔点测定计(英语:Melting point apparatus)

温度计

热重分析仪

其它

分析天平

菌落计数器

螺旋接种仪(英语:Spiral plater)

核磁共振仪

盘式分析仪(英语:Plate reader)

 电子设备

电流表

电流源

信号发生器

恒电流仪(英语:Galvanostat)

万用表

网络分析器(英语:Network analyzer (electrical))

示波器

脉冲发生器(英语:Pulse generator)

恒电位器(英语:Potentiostat)

频谱分析仪

时域反射仪(英语:Time-domain reflectometer)

电压源

电压表

 安全设备个人护具(英语:Personal protective equipment)

实验服

面罩

口罩

橡胶围裙

紧急淋浴器(英语:Emergency eyewash and safety shower station)

眼或手

耐酸手套

紧急洗眼器

手套箱

医用手套

丁腈手套

安全眼镜

安全护目镜

其它

溶剂存储柜

生物安全柜

防火毯

灭火器

通风柜

医学实验室仪器列表(英语:Instruments used in medical laboratories)

取自“https://zh.wikipedia.org/w/index.php?title=示波器&oldid=75695512”

分类:​电子测试设备度量仪器德国发明隐藏分类:​自2020年1月缺少来源的条目自2017年2月需要专业人士关注的页面所有需要专家关注的页面其他需要专家关注的页面含有英语的条目维基共享资源分类链接使用了维基数据上的匹配项

本页面最后修订于2023年1月26日 (星期四) 16:15。

本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)

Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。

维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。

隐私政策

关于维基百科

免责声明

行为准则

开发者

统计

Cookie声明

手机版视图

开关有限宽度模式

示波器的应用范围和使用原理 - 通用测试仪器 - 电子发烧友网

示波器的应用范围和使用原理 - 通用测试仪器 - 电子发烧友网

扫一扫,分享给好友

复制链接分享

电子发烧友App

硬声App

首页

技术

可编程逻辑

MEMS/传感技术

嵌入式技术

模拟技术

控制/MCU

处理器/DSP

存储技术

EMC/EMI设计

电源/新能源

测量仪表

制造/封装

RF/无线

接口/总线/驱动

EDA/IC设计

光电显示

连接器

PCB设计

LEDs

汽车电子

医疗电子

人工智能

可穿戴设备

军用/航空电子

工业控制

触控感测

智能电网

音视频及家电

通信网络

机器人

vr|ar|虚拟现实

安全设备/系统

移动通信

便携设备

物联网

区块链

HarmonyOS

RISC-V MCU

光伏

ChatGPT

IGBT

充电桩

氮化镓

BLDC

逆变器

5G

电机控制

资源

技术文库

新品速递

电路图

元器件知识

电子百科

最新技术文章

下载

在线工具

常用软件

电子书

datasheet

专栏

电子说

专栏

社区

论坛

问答

小组

技术专栏

社区之星

试用中心

HarmonyOS技术社区

2023电子工程师大会

研究院

活动

设计大赛

硬创大赛

社区活动

线下会议

在线研讨会

小测验

学院

直播

课程

视频

企业号

华秋智造

华秋PCB

高可靠多层板制造商

华秋SMT

高可靠一站式PCBA智造商

华秋商城

自营现货电子元器件商城

PCB Layout

高多层、高密度产品设计

钢网制造

专注高品质钢网制造

BOM配单

专业的一站式采购解决方案

华秋DFM

一键分析设计隐患

华秋认证

认证检测无可置疑

工具

PCB在线检查

datasheet查询

选型替代查询

免费样品申请

免费评测试用

工程师专区

技术子站

搜索

搜索历史

清空

搜索热词

0

聊天消息

系统消息

评论与回复

查看更多

查看更多

查看更多

登录

0

关注

0

粉丝

0

动态

个人中心

内容管理

积分兑换

当前积分:

修改资料

退出登录

登录后你可以

下载海量资料

学习在线课程

观看技术视频

写文章/发帖/加入社区

登录

创作中心

发布

发文章

发资料

发帖

提问

发视频

创作活动

推荐

分类

资料

软件

工具

排行榜

DataSheet

搜索

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>测量仪表>通用测试仪器>示波器的应用范围和使用原理

示波器的应用范围和使用原理

马也•来源:互联网•

2017-11-21 14:51

次阅读

个评论

  示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

  示波器应用范围

  示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。照度仪正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。

  1、在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。

  2、在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。

  3、在无线通讯测试中,接地电阻测试仪频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。

 

 

  示波器的基本组成

  

  (1)示波管

  示波管是一种特殊的电子管,是示波器一个重要组成部分。示波管由电子枪、偏转系统和荧光屏3个部分组成。

  

  (2)垂直偏转系统

  垂直偏转系统包括垂直衰减器和垂直放大器。它将垂直输人信号衰减或放大到一定幅度,输出推挽信号,加到示波管的垂直偏转板,使电子射线的垂直偏转距离正比于被测信号的瞬时值。由于示波管的偏转灵敏度甚低,所以一般的被测信号电压都要先经过垂直放大电路的放大,再加到示波管的垂直偏转板上,以得到垂直方向的适当大小的形。

  (3)水平偏转系统

  水平偏转系统从外触发输人端经触发电路、扫描电路、水平放大器到示波管的水平偏转板。触发电路将被测信号或外触发输人信号置换成触发脉冲启动扫描电路。由于示波管水平方向的偏转灵敏度也很低,所以接入示波管水平偏转板的电压(锯齿波电压或其它电压)也要先经过水平放大电路的放大以后,再加到示波管的水平偏转板上,以得到水平方向适当大小的形。

  (4)电源供给电路

  电源由高压电源和低压电源两部分组成,供给示波管及各组成部分所需要的直流电压和灯丝电压。消隐与增辉电路用来传送和放大增辉和消隐信号。

阅读全文

12下一页全文

本文导航第 1 页:示波器的应用范围和使用原理第 2 页:示波器的使用原理

示波器(181126)

示波器(181126)

点赞

收藏

扫一扫,分享给好友

复制链接分享

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

发布

发布

查看更多

相关推荐

示波器全内存解码的奥秘ZDS示波器全型号都支持全内存解码了,下载最新固件即可支持。新特性与ZDS示波器特有的深存储特点切合度更高,能让解码范围更宽广。我们来看看新特性为我们带来的改变。2015-10-01 14:43:001146模拟示波器与数字示波器的区别本文主要讲解了模拟示波器与数字示波器的区别。2015-12-16 09:46:296448你真的了解示波器探头吗?▼关注公众号:工程师看海▼ 示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图: 探头的选择和使用需要考虑如下两个方面: 其一:因为探头有负载效应,探头2023-05-05 15:32:10863示波器探头各种作用及工作原理示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路。2023-06-06 11:18:34647示波器探头的类型和工作原理示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路。2023-08-04 10:58:07308示波器测i量范围谁知道proteus里示波器的测量范围啊,为什么4M的方波在示波器上显示的乱七八糟,是不是已经超出他的测量范围了?2014-03-06 16:33:47使用相关性测量相位差设置其定时分辨率。例如,对于100 MHz信号,每个相位相位转换为27 ps。显然,对于一度相位测量精度,示波器的采样时间必须小于此数。这转化为高于36 GHz的采样率,这超出了大多数示波器的范围2018-09-14 21:03:28如何使用示波器测量一个范围的固定频率如我示波器是100Mhz的但是我现在要测量一个10Khz或者1Khz的1mv的低频信号,如何让示波器仅显示10Khz或者1Khz以下的信号。// 仅靠调节示波器完成,如RC 等电路仅能限制电路板上的频率,但是探头在空气中接收到的如何解决。 //如高频的电磁波等。2019-08-23 09:57:01安泰示波器维修分享--实时示波器和采样示波器的区别`   采样示波器和实时示波器有什么区别?两者的应用范围有哪些不同,哪些是可以覆盖的?常用示波器的各位亲们知道答案么?   实时示波器通常被称为DSO(数字存储示波器)或MSO(混合信号示波器2018-04-26 10:44:44请问示波器探头分类有哪些?`示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如图1所示。图1 示波器探头的作用探头的选择和使用需要考虑两方面:· 因为探头有负载效应,探头会直接影响被2020-05-16 07:52:50示波器原理及应用了解示波器的构造和工作原理学会利用示波器来测量电压和频率掌握李萨如图形的基本原理和用途CS-4125单束双综示波器LAG-27音频信号源EM1643函数发生器1.示波器2008-12-03 19:18:230电脑虚拟示波器软件下载电脑虚拟示波器软件:本软件实现了示波器,信号发生器,频率计,万用表的功能,在音频范围内可完全替代上述仪器。这并不是仿真软件,而是实用的工具,这些虚拟仪器可以很2008-12-09 16:40:41456基于声卡的虚拟示波器软件基于声卡的虚拟示波器软件:

本软件实现了示波器,信号发生器,频率计,万用表的功能,在音频范围内可完全替代上述仪器。这并不是仿真软件,而是实用的工具,这些虚2009-08-07 15:38:55120罗德与施瓦茨RT-ZP05S无源探头带宽500MHz应用范围广泛,所有探头和附件决定了 测量精度以及操作人员安全性。罗德与施瓦茨 示波器提供高品质的有源及无源探头。除规格 多样,示波器探2023-05-22 16:39:09基于以太网的虚拟示波器设计为提升虚拟仪器传输速率与实时性能,扩展监测范围,在VC的软件平台上设计了一种全功能虚拟示波器。与传统虚拟示波器相比,该系统采用嵌入式系统完成信号采集,采用工业以太2010-11-22 16:06:4871虚拟示波器虚拟示波器

虚拟示波器的显示方式为了满足自动控制不同实验的要求我们提供了示波器的四种显示方式。(1)示波器的时域显示方2008-12-05 23:36:515123二手示波器,HP54602B 150MHZ数字示波器(曾S1

HP54602B 示波器

150MHz带宽 4个输入通道(2十2) 时基范围2ns/div—5s/div

2009-02-05 10:58:591018EWB中双踪示波器的使用

EWB中双踪示波器的使用

在EWB中双踪示波器的使用如下

双踪示波器2009-07-10 09:13:114845示波器的常识示波器的常识

分类:示波器与应用

     1、示波器怎2009-08-25 09:32:231090示波器带宽的原理及应用技巧示波器带宽的原理及应用技巧

示波器带宽的原理

示波器带宽在测试中的应用

工程师在选择示波器的时候,如何确定带宽2009-10-07 10:27:561459什么是示波器的触发?什么是示波器的触发?

任何示波器的存储器都是有限的,因此所有示波器都必须使用触发。触发是示波器应该发现的用户感兴趣的事件。换句话说2009-10-10 15:46:231042用示波器修彩电的步骤及方法用示波器检修彩电,不一定要遵守一些固定的步骤,但对初用示波器修彩电的人,掌握一般的检修程序则是必要的,往往可少走弯路,起到事半功倍的效果。这里用16个字对检修的一般程序作简单概括:准备工作,压缩范围,限定范围,确定故障。2011-03-15 12:09:151489示波器最基础应用-波形调节与异常信号的捕获#数字示波器 #示波器 #示波器学习 #示波器入门实操 示波器安泰小课堂发布于 2023-06-15 16:13:53基于LABVIEW的虚拟示波器设计—虚拟示波器基于LABVIEW的虚拟示波器设计—虚拟示波器2015-12-16 14:15:2782电子示波器_八_陈超电子示波器_八_陈超电子示波器_八_陈超电子示波器_八_陈超。2016-05-04 17:54:422电子示波器_四_陈超电子示波器_四_陈超 电子示波器_四_陈超。2016-05-05 10:10:280电子示波器_三_陈超电子示波器_三_陈超 电子示波器_三_陈超。2016-05-05 10:10:280电子示波器_一_陈超电子示波器_一_陈超 电子示波器_一_陈超。2016-05-05 10:10:280电子示波器_九_陈超电子示波器_九_陈超 电子示波器_九_陈超。2016-05-05 10:10:280电子示波器_七_陈超电子示波器_七_陈超 电子示波器_七_陈超。2016-05-05 10:10:280电子示波器_五_陈超电子示波器_五_陈超 电子示波器_五_陈超。2016-05-05 10:10:280电子示波器_六_陈超电子示波器_六_陈超 电子示波器_六_陈超。2016-05-05 10:10:280电子示波器_二_陈超电子示波器_二_陈超 电子示波器_二_陈超。2016-05-05 10:10:280示波器探头是什么_示波器探头原理_示波器探头的使用示波器探头对测量结果的准确性以及正确性至关重要,它是连接被测电路与示波器输入端的电子部件。最简单的探头是连接被测电路与电子示波器输入端的一根导线,复杂的探头由阻容元件和有源器件组成。2017-08-21 15:02:5714128虚拟示波器好用吗_虚拟示波器是怎么用的介绍了虚拟示波器,虚拟示波器好用吗?那就看你的具体用途了,虚拟示波器是虚拟仪器的一个重要代表,其采用计算机基本的虚拟技术,用来模拟通用示波器的面板操作和处理功能,完成信号采集,调理、分析及显示等功能。笔者分享了虚拟示波器详细操作步骤,以供参考。2017-10-23 16:09:3323110数字示波器与模拟示波器的对比一、模拟和数字,各有千秋廿世纪四十年代是电子示波器兴起的时代,雷达和电视的开发需要性能良好的波形观察工具,带宽100MHz的同步示波器开发成功,这是近代示波器的基础。五十年代半导体和电子计算机的问世2017-11-24 01:01:253391频谱仪与示波器有什么区别频谱仪与示波器有什么区别,从实时带宽、动态范围、灵敏度和功率测量准确度四个方面比较了示波器和频谱仪的分析性能指标的区别。2017-12-28 18:53:0710207示波器探头的作用以及探头的选择和使用要考虑的两个方面示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路。2018-01-10 14:05:1112788示波器测量电压范围_示波器测量电压最大量程示波器是广泛应用的测试仪器,利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。2018-01-15 09:42:1950563频谱仪和示波器有什么区别本文主要介绍了频谱仪和示波器有什么区别,频谱仪和示波器之间是有很大的不同的,我们对于频谱仪和示波器的区别都了解过吗?接下来小编就带大家了解一下。首先,我们从实时带宽、动态范围、灵敏度和功率测量准确度四个方面比较了示波器和频谱仪的分析性能指标的区别。2018-01-15 10:40:025850怎么用示波器测功率本文介绍了怎么用示波器测功率,小编为大家总结了使用示波器执行功率测量的七大秘诀。那么,在测量功率时我们应该注意些什么呢?首先,要尽量扩大测量动态范围;然后要选择优化信号完整性的探测方法。以下我们来具体看看吧。2018-01-15 10:55:4437234频谱仪和示波器哪个好_示波器和频谱仪的功能介绍本文主要介绍了频谱仪和示波器哪个好_示波器和频谱仪的功能介绍。小编对示波器和频谱仪的功能进行了详细的分析介绍,并且,从实时带宽、动态范围、灵敏度和功率测量准确度四个方面比较了示波器和频谱仪的分析性能到底谁的好。下面跟小编一起来看看吧。2018-01-15 11:26:4616473示波器带宽是什么_示波器带宽如何选择本文开始介绍了示波器概念、种类以及示波器的作用,其次阐述了示波器带宽的定义与分类,最后介绍了示波器带宽的选择方法。2018-04-09 10:53:5431720示波器和频谱仪的性能指标对比分析频谱仪示波器分不清示波器和频谱仪的区别的人常闹笑话,为避免尴尬,本文简单总结以下四点用实时带宽、动态范围、灵敏度、功率测量准确度,比较示波器和频谱仪的分析性能指标,来区分两者。2018-08-05 07:54:004363示波器探头的作用和类型应用范围介绍在进行电子制作的时候,我们免不了要使用各种各样的测试仪器,而其中比较常用的的一种就是示波器了。使用示波器的时候,我们使用探头来测量时间、频率和电压值等物理量。但是你是否有想过,探头是如何测量这些物理量呢?2019-08-12 15:19:536505示波器测量市电的方法在使用示波器测量市电的过程中,用户经常会产生一些困惑,例如:用示波器测量市电总是跳闸;测量市电为什么一定要将三脚插头的地线掰断才能测;为什么测市电时,输入电压在示波器测量范围内却把示波器烧了呢?2019-08-29 14:38:2514706D38N示波器专用电流钳的应用特点和范围介绍D38N电流钳专门设计用于示波器、波形显示仪器以及其它对频宽要求较高的仪器。可精确测量AC电流,并输出与之成比例的电压信号,可在示波器上直接读数。一个三档滑动开关,可方便进行量程选择。大型钳口设计,可钳成束电缆或母线。2020-07-17 11:35:071688示波器探头的应用类型和适用范围分析示波器是电子工程师必不可少的工具之一,它能够将肉眼不可见的电信号转化为可见的图像,将被测量的信号的变化情况显示在屏面上,方便人们进行电路设计及错误定位。在构成示波器的器件当中,探头的重要性自是不必多说,其质量直接关系到示波器测量结果的准确性。2020-09-18 09:07:461209示波器的使用方法(三):示波器的使用方法详解示波器的使用方法并非很难,重点在于正确使用示波器的使用方法。往期文章中,小编对模拟示波器的使用方法和数字示波器的使用方法均有所介绍。为增进大家对示波器的使用方法的认识,本文将再次对示波器的使用方法详加介绍2020-12-24 20:37:542227实时示波器与采样示波器区别  实时示波器通常被称为DSO(数字存储示波器)或MSO(混合信号示波器)。目前在售的大部分示波器都是实时示波器。实时示波器的带宽范围从几 MHz到几十GHz,价位在几百美元到几十万美元不等。采样2021-01-07 11:06:2310129MDO-2000A系列多功能混合域示波器的性能特点及应用范围MDO-2000A系列是一款多功能混合域数字示波器。全机种带宽范围包括300MHz、200MHz和100MHz。实时采样率最大2GSa/s,储存深度最高20M/每通道。2021-01-15 09:56:56552P3010电压探头的性能特点及应用范围无源电压探头是示波器最常用的探头。虽然其它专用探头扩展了示波器作为测量系统的范围和功能,但是通用的无源电压探头则作为示波器的工作端工具,每天都被工程师和技术人员所使用。2021-02-14 12:01:00814TBS1000B-EDU系列示波器的性能特点及应用范围TBS1000B-EDU系列数字存储示波器是专为满足当今大专院校的需求而设计的。它是第一个使用创新的全新课件系统的示波器,教育工作者能够把教学材料无缝整合到TBS1000-EDU 示波器上。2021-01-25 09:32:08700示波器探头的应用类型及适用范围顾名思义,探头起到探测的作用。它是连接被测试电路和示波器输入端的重要媒介。最简单的探头是连接被测电路与电子示波器输入端的一根导线,复杂的探头由阻容元件和有源器件组成。简单的探头没有采取屏蔽措施很容易受到外界电磁场的干扰,而且本身等效电容较大,造成被测电路的负载增加,使被测信号失真。2021-06-28 14:11:161076示波器探头的负载效应的检测和分析示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图: 探头的选择和使用需要考虑如下两个方面: 其一:因为探头有负载效应,探头会直接影响被测信号和被测电路2021-10-19 15:59:081178数字示波器的重要参数指标都有哪些电子电路组成,电路上的元器件对频率有一个响应范围,一个示波器的性能越高,能处理的信号频率越高,能捕捉到更高频率的输入信号。 而被测信号,往往是不同频率叠加后的波形,如果示波器的带宽很低,信号的高频部分就会丢失,被2022-01-12 12:14:245780示波器探头的选择和作用及原理示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路。2022-09-13 15:28:021954怎么调节使用普源示波器作为电子工程师,在测试电路中都会用到示波器,普源精电示波器作为国产示波器是针对最广泛的主流数字示波器市场的设计、调试、测试的需求而设计的数字示波器。利用示波器,就能够观察测量不同信号随着时间或者信号的变化。安泰测试为大家介绍一下怎么调节使用普源示波器。2022-09-27 16:06:413039keysight是德MSOX3054A 示波器MSOX3054A 提供适合您预算的价格点,具有卓越的性能和可选功

能,这是同类示波器中任何其他示波器所不具备的。安捷伦的突破性技术以相同的预算提

供了更多的范围。

MSOX3054A2022-11-15 15:51:05416示波器探头的工作电压范围、衰减系数、耦合阻抗等指标都是什么意思呢?示波器探头的工作电压范围、衰减系数、耦合阻抗等指标都是什么意思呢?2022-12-07 10:03:422897数字示波器和摸拟示波器有什么区别模拟示波器只能观察简单重复信号(正弦波,方波,三角波等)和复杂的重复信号(电视信号)。而不能观察数字信号。像测电源开与关一瞬间的电压上升时间如果用用模拟示波器是很难办到的而用数字示波器就很简单。利用2022-12-16 16:23:483776示波器的时基是什么?示波器的时基是什么?2023-02-02 11:46:014914示波器探头怎么连接示波器?你知道示波器探头是如何连接到示波器上的吗?由于示波器和探头种类很多,我们以混合信号示波器 (MSO) 的为例,来介绍下示波器探头的连接。2023-02-14 14:45:454647理解示波器带宽---上升时间和信号保真度为了满足示波器探头设计要求,探头带宽是大频率范围。例如,一个100 MHz的示波器探头要求所测量的频率范围达到100MHz,探头能够捕捉信号在指定频率范围的变化。2023-03-07 10:39:562005泰克示波器中几款比较受欢迎的型号泰克(Tektronix)是一家享有很高声誉的示波器品牌,其产品系列中包含了多款不同的型号,每个型号都具有不同的特点和适用范围。 以下是泰克示波器中几款比较受欢迎的型号: 1、泰克DPO2000B2023-03-21 14:29:111517示波器探头的选择和使用原理分析示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路。2023-04-01 11:36:37649PRBTEK分享泰克高速示波器探头的特性及适用范围泰克高速示波器探头是一种专门用来进行电路信号测量的设备。它适用于信号频率高、幅度小的电路信号测量,比如数字电路、射频电路、微波电路等。相较于传统示波器探头拥有一些独特的特性。 1. 高带宽 泰克高速2023-04-14 14:41:49441示波器探头电压量程解读示波器探头是一种用于测量电路中电压信号的工具,电压量程是指探头能够测量的最大和最小电压范围。了解探头的电压量程,可以帮助我们在实际测量电路时进行选择。以下是关于示波器探头电压量程的详细解读2023-04-17 10:46:323524示波器探头的带宽必须是示波器带宽的三到五倍吗?示波器探头是测量信号时的必备工具,它能够接收并将被测信号转换为示波器能够识别和显示的信号。在选择示波器探头时,用户通常会关注探头的带宽和精度,以确保测量结果的准确性。关于示波器探头的带宽和示波器带宽之间的关系,有人认为示波器探头的带宽必须是示波器带宽的三到五倍。但事实真的如此吗?2023-04-17 10:58:291379TektronixP6101B无源电压探头的产品特点及其应用范围无源电压探头是示波器常用的探头,作为一个测量系统,虽然其它特殊探头扩展了示波器的范围,增加了示波器的功能但工程技术人员经常用的还是无源电压探头,用它作为示波器的测量端。 它比组合探头重量更轻、操作2023-05-11 10:49:18109今天的工程师需要什么样的示波器?示波器有“电子工程师之眼”的称号,带宽和采样率为示波器的核心指标,其中带宽决定了示波器所能检测信号的频率范围,采样率决定了信号采样的频次。根据Imarc最新预测,2021年全球数字示波器市场规模约为2023-06-14 16:30:15196示波器基础二十问(上)目录第一问:示波器的波形代表什么意义?第二问:示波器的波形区的网格代表什么?第三问:如何进行示波器的探针补偿?第四问:从“自动”谈起,示波器是如何设置的?第五问:示波器设置——垂直幅度、水平时间第六2021-11-16 15:33:39989示波器相关术语介绍(下)能准确测量信号的频率范围。当信号频率到达一定程度后,随着信号频率的增加,示波器准确测量信号的能力会减弱。示波器的带宽是指在示波器的输入端加正弦波,幅度衰减至-3dB(70.7%)时的频率点就是示波器的带宽。2021-11-03 16:01:161546什么是示波器?示波器的原理,应用范围?示波器是一种能显示电压信号动态波形的测试计量仪器。将时变的电压信号在时域上转换成曲线,将原来看不见的电信号在二维平面上转换成直观的可见光信号,因此可以分析电信号的时域性质。更先进的示波器甚至可以分析2022-07-28 14:26:311196泰克TPS2024B示波器怎么测电压?: - 将示波器放置在平稳的表面上,并确保周围环境清洁和无干扰。 - 连接示波器的探头与待测电路或信号源。将探头的地线(黑色插头)连接到电路的地点或信号源的地。 2. 设置垂直参数: - 选择适当的电压范围:根据待测电压信号的幅值范围,选择合适的垂直电压范围。在TPS2024B示波器2023-07-04 17:45:12499数字示波器和模拟示波器有何区别?数字示波器和模拟示波器有何区别 数字示波器(Digital Oscilloscope)和模拟示波器(Analog Oscilloscope)是测试电路中常见的两种示波器,它们在原理、性能和应用上都有2023-09-04 16:43:022309数字示波器和模拟示波器哪个好?数字示波器和模拟示波器哪个好? 随着现代电子技术的不断发展与进步,数字示波器和模拟示波器已成为测量电子信号时最为常用的仪器之一。二者分别采用数字或模拟信号采集的方式来测量电子信号,各有其特点和优缺点2023-09-04 16:52:002598什么是示波器带宽?示波器带宽不够会有什么影响?什么是示波器带宽?示波器带宽不够会有什么影响?  示波器带宽是指示波器能够正确显示信号频率范围的上限,即示波器信号处理的最高峰值。通俗地说,带宽可以理解为示波器对电信号的“接收能力”,它表示在频率2023-09-04 17:17:262915示波器的时基是什么意思?示波器的时基在哪里?示波器时基怎么看?示波器的时基是什么意思?示波器的时基在哪里?示波器时基怎么看?  示波器是一种用于观察电信号的重要仪器。它能够将电信号转换成可见图形,并以数字形式输出。其中,示波器的时基是十分重要的组成部分2023-09-12 17:06:392990频谱仪和示波器的区别频谱仪和示波器是电子测量中常用的两种仪器,它们在原理、功能和应用方面都有所不同。本文将详细介绍频谱仪和示波器的工作原理、特点和应用范围,并探讨它们之间的区别。2023-09-14 17:03:37843什么是示波器的实时采样率?什么是示波器的等效时间采样?的一个重要指标,因为它决定了示波器可以测量的信号的频率范围和波形分辨率。实时采样率越高,示波器所能测量的频率范围就越宽,波形分辨率也就越高。 示波器实时采样率受到很多因素的影响,例如示波器带宽、数字信号处理器(DS2023-10-17 16:16:07691示波器采样时间怎么设置 示波器的采样率有什么意义?示波器采样时间怎么设置 示波器的采样率有什么意义? 一、示波器采样时间的设置 1. 示波器采样时间的概念 示波器的采样时间指的是示波器通过在指定时间段内获取的样本数量来描述示波器的性能。示波器采样2023-10-17 16:16:101721示波器使用探头的好处是什么?范围。示波器本身有着一定的测量范围,而探头能够将电子信号放大或缩小,使得示波器能够测量更大范围的信号。无论是小电流还是大电流,探头都能够将其转化为示波器能够读取和分析的信号,极大地方便了工程师的测量工作。 其次2023-10-23 10:49:49232什么是示波器?示波器的原理本文分五篇,第一篇介绍示波器的原理,包含模拟示波器和各种常见的数字示波器。第二篇介绍示波器的主要指标:带宽,采样率,内存深度,分辨率;以及示波器对测量的影响。第三篇介绍探头的种类和原理,以及探头寄生2023-11-03 17:16:42579pc示波器、台式示波器和手册示波器的区别pc示波器、台式示波器和手册示波器的区别 PC示波器、台式示波器和手持示波器是目前市面上常见的三种示波器类型,它们各自有着不同的特点和应用场景。下面将详细介绍这三种示波器的区别。 1. PC示波器2023-11-06 11:50:46429示波器高压探头的操作说明及使用注意事项连接探头衰减端的地线(鳄鱼夹)到好的接地点或可靠的接地测试端。连接BNC头到示波器的BNC输入端口。选择示波器要求的量程范围。2023-11-29 15:06:54928示波器探头的小阻抗和幅值解析示波器探头是电子测量中不可或缺的工具,它能够帮助我们观察和分析电路中的波形信号。而在选择示波器探头时,一个重要的考虑因素就是其阻抗大小和幅值范围。本文将详细介绍示波器探头的小阻抗和幅值,并解析2023-12-01 11:21:02382示波器带宽怎么选择将介绍示波器带宽的概念、选择带宽的考虑因素以及常见的示波器带宽选择方法。 首先,我们来了解一下示波器带宽的概念。示波器的带宽是指示波器能够准确传递和显示信号的频率范围。示波器根据信号的频率范围进行采样和处理,2023-12-07 15:37:28498示波器探头原理示波器的测量范围和分辨率。 示波器探头包括探头引线、接头插头、探头底座和探头头部四个部分,探头头部是探测电压波形信号的地方,探头底座是连接示波器的地方,探头引线将被测信号传输到探头头部,接头插头连接到被测电2023-12-08 10:47:34342示波器衰减探头的工作原理示波器衰减探头是电子测量领域中一项重要的工具,它通过降低测量信号的幅度来适应示波器的输入范围。本文将深入介绍示波器衰减探头的原理,带您揭开精确测量的秘密。2023-12-25 11:23:54175采样示波器和实时示波器的区别采样示波器和实时示波器的区别  采样示波器和实时示波器是电子测量领域常用的两种示波器类型,它们在原理、特点、应用和优缺点等方面存在差异。下面我将从这些方面逐一详细介绍,以帮助你更好地理解它们2024-01-03 17:13:39296高压差分探头是连接示波器使用吗?高压差分探头是连接示波器使用吗? 高压差分探头是一种专门用于连接示波器的测量工具,它可以帮助工程师和技术人员在测量高压电路时提供安全、准确的测量结果。本文将详细介绍高压差分探头的原理、优点和适用范围2024-01-08 15:29:59124示波器探头补偿的类型选择示波器探头时要注意的一点是,要确保它有足够的补偿范围来配合使用示波器。当高带宽探头与低带宽示波器一起使用时,可能会出现问题2024-01-09 14:57:2660示波器差分探头怎么测量噪声已经正确连接并处于正常工作状态。 设置示波器参数:将示波器的垂直灵敏度和时基设置到合适的范围,以便能够清晰地观察到差分探头的输出波形。 校准探头:在测量噪声之前,需要对差分探头进行校准,以确保其输出信号的准确性2024-01-10 16:34:3884示波器的三大关键指标有哪些?重点关注,它们分别是带宽、采样率和垂直分辨率。 带宽是一个示波器的重要指标,它定义了示波器能够准确显示的频率范围。一个示波器的带宽通常以-3dB的衰减点进行定义,这意味着在该频率下,输入信号的振幅会衰减到原始振幅的2024-01-17 15:14:24162如何把示波器和探头对测量的干扰影响降到最低? 首先,我们应该选择合适的示波器和探头。不同的应用需要不同的频率范围和灵敏度。我们应尽量选择频率范围和灵敏度与被测信号匹配的示波器和探头。这样做可以避免在测量过程中引入额外的干扰。 2.保持示波器和探头的良好接地 接地是2024-01-17 15:14:27162等效时间采样示波器与实时示波器的对比,有什么不同?等效时间采样示波器与实时示波器的对比,有什么不同? 等效时间采样示波器和实时示波器是电子测试设备中常用的两种示波器。它们在运行原理、应用场景、优点和缺点等方面存在一些显著差异。 一、等效时间采样2024-01-19 11:29:28242示波器怎么看峰峰值呢?送一个稳定的周期信号。 2. 设置示波器:打开示波器并调整触发控制以确保波形稳定。确保示波器的时间基准和电压基准设置正确。 3. 选择合适的垂直渐进:根据信号的幅度范围选择适当的垂直渐进,以便能够清晰地观察到完整的波形。 42024-01-23 14:45:42189

已全部加载完成

精选推荐

更多

文章 资料 帖子

理想双工器和实际双工器的区别

要长高

3小时前

173 阅读

双工器的原理及调试方法

星星科技指导员

3小时前

166 阅读

为什么取名图腾柱?推挽电路和图腾柱电路的区别

冬至子

23小时前

500 阅读

关于加速电容电路的基础知识详解

冬至配饺子

23小时前

488 阅读

一文详解光耦的作用与分类、使用技巧

冬至子

23小时前

457 阅读

MP3维修培训内部资料

韩刚龙

333

免费

134下载

新电工书册

xiaomiao

44

免费

0下载

提高测量精度的五大技巧-labview视频教程

王杰

41984

免费

128下载

参赛开源资料电磁炮电路设计方案

KK

1.31 MB

免费

180下载

bmm-cpp苞米面C++模板库

邹俩珍

0.21 MB

免费

0下载

【演示教程】盘古EU_22K开发板&PMOD音频输入输出模块操作演示

yonglong11{$vo.author}

14小时前

5 阅读

VisionFive 2 生态进展双周报(1.1-1.31)

jf_85903230{$vo.author}

14小时前

14 阅读

【RISC-V开放架构设计之道|阅读体验】+ 个人心得并祝福

rx_ted{$vo.author}

5天前

587 阅读

设计一个FPGA控制16路DAC,集成输出可以使用什么接口?

bulabul{$vo.author}

3天前

367 阅读

RK3588 拉流异常挂死问题咨询

jf_02881941{$vo.author}

1天前

297 阅读

推荐专栏

更多

华秋(原“华强聚丰”):

电子发烧友

华秋开发

华秋电路(原"华强PCB")

华秋商城(原"华强芯城")

华秋智造

My ElecFans

APP

网站地图

设计技术

可编程逻辑

电源/新能源

MEMS/传感技术

测量仪表

嵌入式技术

制造/封装

模拟技术

RF/无线

接口/总线/驱动

处理器/DSP

EDA/IC设计

存储技术

光电显示

EMC/EMI设计

连接器

行业应用

LEDs

汽车电子

音视频及家电

通信网络

医疗电子

人工智能

虚拟现实

可穿戴设备

机器人

安全设备/系统

军用/航空电子

移动通信

工业控制

便携设备

触控感测

物联网

智能电网

区块链

新科技

特色内容

专栏推荐

学院

设计资源

设计技术

电子百科

电子视频

元器件知识

工具箱

VIP会员

最新技术文章

社区

小组

论坛

问答

评测试用

企业服务

产品

资料

文章

方案

企业

供应链服务

硬件开发

华秋电路

华秋商城

华秋智造

nextPCB

BOM配单

媒体服务

网站广告

在线研讨会

活动策划

新闻发布

新品发布

小测验

设计大赛

华秋

关于我们

投资关系

新闻动态

加入我们

联系我们

举报投诉

社交网络

微博

移动端

发烧友APP

硬声APP

WAP

联系我们

广告合作

王婉珠:wangwanzhu@elecfans.com

内容合作

黄晶晶:huangjingjing@elecfans.com

内容合作(海外)

张迎辉:mikezhang@elecfans.com

供应链服务 PCB/IC/PCBA

江良华:lanhu@huaqiu.com

投资合作

曾海银:zenghaiyin@huaqiu.com

社区合作

刘勇:liuyong@huaqiu.com

关注我们的微信

下载发烧友APP

电子发烧友观察

电子工程师社区

1-32层PCB打样·中小批量

元器件现货·全球代购·SmartBOM

SMT贴片·PCBA加工

PCB&PCBA Manufacturing

华秋简介

企业动态

联系我们

企业文化

企业宣传片

加入我们

版权所有 © 深圳华秋电子有限公司

电子发烧友

(电路图)

粤公网安备 44030402000349 号

电信与信息服务业务经营许可证:合字B2-20210191

工商网监

湘ICP备 2023018690 号

示波器的工作原理和组成-电子工程世界

示波器的工作原理和组成-电子工程世界

|首页|

电子技术|

电子产品应用|

电子头条|

社区|

论坛

测评

博客

电子技术视频|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

|首页|

电子技术|

电子产品应用|

电子头条|

论坛|

大学堂|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

测试测量

测试测量>信号源与示波器> 示波器的工作原理和组成

示波器的工作原理和组成

最新更新时间:2016-04-22来源: eefocus关键字:示波器  工作原理

手机看文章

扫描二维码随时随地手机看文章

收藏

评论

分享到

微博

QQ

微信

LinkedIn

示波器是一种常用的电子测量仪器,可以把肉眼无法看见的电信号转换为图像便于人们的观察。示波器在使用的过程中用户对于示波器的工作原理和组成是必须要掌握的,这对于用户的使用是很重要的。今天小编就来具体为大家介绍一下示波器的工作原理和组成吧,希望可以帮助到大家。

      1示波器工作原理

示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1示波管

阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

 

 

图1示波管的内部结构和供电图示

1.荧光屏

现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。

2.电子枪及聚焦

电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位比A1高。G2的正电位对阴极电子奔向荧光屏起加速作用。

电子束从阴极奔向荧光屏的过程中,经过两次聚焦过程。第一次聚焦由K、G1、G2完成,K、K、G1、G2叫做示波管的第一电子透镜。第二次聚焦发生在G2、A1、A2区域,调节第二阳极A2的电位,能使电子束正好会聚于荧光屏上的一点,这是第二次聚焦。A1上的电压叫做聚焦电压,A1又被叫做聚焦极。有时调节A1电压仍不能满足良好聚焦,需微调第二阳极A2的电压,A2又叫做辅助聚焦极。

3.偏转系统

偏转系统控制电子射线方向,使荧光屏上的光点随外加信号的变化描绘出被测信号的波形。图8.1中,Y1、Y2和Xl、X2两对互相垂直的偏转板组成偏转系统。Y轴偏转板在前,X轴偏转板在后,因此Y轴灵敏度高(被测信号经处理后加到Y轴)。两对偏转板分别加上电压,使两对偏转板间各自形成电场,分别控制电子束在垂直方向和水平方向偏转。

4.示波管的电源

为使示波管正常工作,对电源供给有一定要求。规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。阴极必须工作在负电位上。栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

1.2示波器的基本组成

从上一小节可以看出,只要控制X轴偏转板和Y轴偏转板上的电压,就能控制示波管显示的图形形状。我们知道,一个电子信号是时间的函数f(t),它随时间的变化而变化。因此,只要在示波管的X轴偏转板上加一个与时间变量成正比的电压,在y轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。

示波器的基本组成框图如图2所示。它由示波管、Y轴系统、X轴系统、Z轴系统和电源等五部分组成。

 

 

图2示波器基本组成框图

被测信号①接到“Y"输入端,经Y轴衰减器适当衰减后送至Y1放大器(前置放大),推挽输出信号②和③。经延迟级延迟Г1时间,到Y2放大器。放大后产生足够大的信号④和⑤,加到示波管的Y轴偏转板上。为了在屏幕上显示出完整的稳定波形,将Y轴的被测信号③引入X轴系统的触发电路,在引入信号的正(或者负)极性的某一电平值产生触发脉冲⑥,启动锯齿波扫描电路(时基发生器),产生扫描电压⑦。由于从触发到启动扫描有一时间延迟Г2,为保证Y轴信号到达荧光屏之前X轴开始扫描,Y轴的延迟时间Г1应稍大于X轴的延迟时间Г2。扫描电压⑦经X轴放大器放大,产生推挽输出⑨和⑩,加到示波管的X轴偏转板上。z轴系统用于放大扫描电压正程,并且变成正向矩形波,送到示波管栅极。这使得在扫描正程显示的波形有某一固定辉度,而在扫描回程进行抹迹。

以上是示波器的基本工作原理。双踪显示则是利用电子开关将Y轴输入的两个不同的被测信号分别显示在荧光屏上。由于人眼的视觉暂留作用,当转换频率高到一定程度后,看到的是两个稳定的、清晰的信号波形。

示波器中往往有一个精确稳定的方波信号发生器,供校验示波器用。

关键字:示波器  工作原理

编辑:什么鱼 引用地址:示波器的工作原理和组成

上一篇:示波器的控制面板介绍

下一篇:示波器的使用步骤

推荐阅读最新更新时间:2023-10-12 12:37

氯气流量计参数及工作原理

  氯气流量计采用卡门涡街原理制造,具有测量精度高、量程宽、功耗低、安装方便、操作简单、压力损失小等优点,可测量工况体积流量或标准体积流量(一体化智能温度、压力补偿),根据用户需要,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响,可附带脉冲或4~20mADC电流输出功能。无可动机械零件,因此可靠性高,维护量小。采用压电应力式传感器,仪表参数能长期稳定。      氯气流量计参数   1、温度范围: 压电式-40C~ 350C 电容式-60C~ 450C   2、压力规格:PN1.6Mpa; PN2.5Mpa; PN4.0Mpa,更高压力规格可特殊定做   3、范围度: 正常范围1: 10扩展后范围1: 1

[测试测量]

示波器动态电能量测试系统的构成、主要特点及如何实现设计

引言 电能测量是一种成熟、常用而又重要的测试技术。它与能源利用、经济效益和环境保护等重大课题都紧密相关。但是,通常所指的“电能测量”,其测试对象一般是直流或工频电能量。他们都表现为稳态信号。其数值是不随时间变化或缓慢变化或周期变化的。一般来说采用各种电能计量仪表,按工业标准规定测量某些参数数值即可。但是随着科学应用和现代工业自动化技术的发展,在许多实验研究,工业过程及产品测试中,能量的变化不再是稳态过程,而表现为随时间变化的突发性、随机性和瞬时性,是典型的动态时域过程。在实际中这样的例子很多。例如,在工业过程的自动化控制中电机运行条件日趋复杂,表现为电机运行过渡过程的大量增加。即为了执行控制程序指令,电机必须频繁的启动、停车、变速

[测试测量]

示波器常用的13个概念

1、 带宽 指的是正弦输入信号衰减到其实际幅度的70.7%时的频率值,即-3dB点(基于对数标度)。 本规范指出示波器所能准确测量的频率范围。 带宽决定示波器对信号的基本测量能力。 随着信号频率的增加,示波器对信号准确显示能力将下降。 如果没有足够的带宽,示波器将无法分辨高频变化。 幅度将出现失真,边缘将会消失,细节数具将被丢失。 如果没有足够的带宽,得到的关于信号的所有特性、响铃和振鸣等都毫无意义。 5倍准则 5倍准则(示波器所需带宽=被测信号的最高频率成分Х 5)使用5倍准则选定的示波器的测量误差将不会超过±2%,一般已足够了。 然而,随着信号频率的增加,这个经验准则已不再适用。 带宽越高,再现的信号就越准确。 2

[测试测量]

SIGLENT数字示波器新增3个实用功能

示波器是人们设计、制造或修理电子设备不可或缺的工具,被比喻成工程师的“眼睛”。但是大部分人对示波器的印象还仅仅停留在水平调节,垂直调节,触发,光标和测量这些常用功能上。其实示波器为了满足各种各样的测试测量需求和简化测试测量过程提高工作效率,添加了一些比较实用的功能。下面我们就鼎阳数字示波器来简单介绍一下。 Pass/Fail功能 通过制定测试规则,判断输入信号是否在创建的规则范围内,来检测信号的变化情况。可用于检测生产过程中的产品是否合格,检测研发测试过程中的信号是否在误差允许范围内。当示波器缺少高级触发功能时,也可使用此功能捕获一些异常信号。创建测试规则: 统计通过和失败次数,并捕获到不符合规则的异常信号:

[测试测量]

如何验证电流探头的可靠性?

  电流探头是示波器测量电流的必备配件,但不同品牌之间价格往往差别很大,到底什么样的电探头才是可靠的呢?这里分享了电流探头可靠性验证的完整过程,并呈现所有实测结果,您也可依据此法对自己使用的电流探头进行验证。   本文针对ZCP0030-50电流探头进行了全方位性能参数验证, 主要测试参数包括直流精度、上升时间、方波响应、噪声、以及开关电源开关管电流波形实测。为了让实测结果更加直观,我们选择T公司的TCP312电流探头作为实测对比,并且在所有测试配有图片和测试结果,保证测试过程可追溯。   一、直流精度验证   ZCP0030-50标称直流精度为1%rdg±1mV,实测精度如表1所示。   1、测试条件   精度测试所

[测试测量]

开关电源原理与设计(连载八)并联式开关电源的工作原理

      1-4-1.并联式开关电源的工作原理

      图1-11-a是并联式开关电源的最简单工作原理图,图1-11-b是并联式开关电源输出电压的波形。图1-11-a中Ui是开关电源的工作电压,L是储能电感,K是控制开关,R是负载。图1-11-b中Ui是开关电源的输入电压,Uo是开关电源输出的电压,Up是开关电源输出的峰值电压,Ua是开关电源输出的平均电压。

 

      当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L的电流开始增加,同时电流在储能电感中也要产生磁场;当控制开关K由接通转为关断的时候,储能电感会产生反电动势,反电动势产生电流的方向与原来电流的方向相同,因此,在负载上会

[电源管理]

12个问答教你如何正确挑选示波器

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。 示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。示波器被誉为工程师的“眼睛”,那么该如何快速正确的挑选示波器呢?今天安泰测试为大家整理了12个问答,助于大家正确选型示波器。 12个问答教你如何正确挑选示波器: 1、示波器最值钱的指标是什么? 带宽,档次级

[测试测量]

简述伺服驱动器工作原理和控制方式

伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。 首先功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程,整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。 **◆ ◆ ◆ ◆ ◆

[嵌入式]

热门资源推荐

热门放大器推荐

更多

 电气控制与PLC_第2版

 电气控制与可编程序控制器应用技术(FX_3U系列)

 电气控制与西门子S7-300PLC编程技术

 电子电路识图、应用与检测 (韩雪涛)

 开关电源仿真与设计基于SPICE 第2版 高频电路基础 线性系统理论 (第2版) python从入门到实践

 ISL28158FBZ

 ALD1704GDAMXXXX

 ISL28230CUZ-T

 G1214TA2UF

 OP497BY

 LT1057SW#TRPBF

 AZ4558CM-G1

 MM74C909J/A+

小广播

热门活动换一批更多

■报名赢【养生壶、鼠标】等|STM32 Summit全球在线大会邀您一起解读STM32方案

■有奖征文:邀一线汽车VCU/MCU开发工程师,分享开发经验、难题、成长之路等

■泰克 MSO6B 探索营:技术指标大挑战,闯关赢好礼

■有奖直播:ADI 惯性 MEMS 传感器的应用价值与选型

■MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~

■村田在线课堂:移动篇

■罗姆有奖直播|从0到1,带你了解电机及其驱动 开始报名啦~

最新测试测量文章

【做信号链,你需要了解的高速信号知识(一)】为什么要使用LVDS或JESD204B标准?信号链是连接真实世界和数字世界的桥梁。随着ADC采样率和采样精度的提升,接口芯片的信号传输速度也越来 ...

如何通过接地摇表测量接地电阻?电力系统中电气设备接地的目的是为了保证人身和电气设备的安全以及设备的正常工作。接地电阻的测量通过接地电阻表(又称为接地电阻测试仪) ...

FLIR推出声学成像仪,助力快速定位气体泄漏与机械故障FLIR,这家以热成像技术著称的公司,最近宣布推出了一款新型的成像仪,它能够让不可见的事物变得可见。不过,这一次,FLIR并不是利用热数据 ...

【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事构建测试系统时,可能需要测量多个信号,此时仅依靠一个示波器的可用通道可能无法完全捕获所有信号。要增加测试系统中的示波器通道数量,常 ...

是德科技发布无线测试平台, 加速Wi-Fi 7性能测试是德科技发布无线测试平台, 加速Wi-Fi 7性能测试•一站式解决方案能够仿真 Wi-Fi 设备和网络流量,全面覆盖最新 IEEE 802 11be 标 ...

e络盟开售NI LabVIEW+套件,加速测试产品上市

是德科技推出领先的基准测试解决方案以加快部署人工智能基础设施

客户案例 | 多通道数模转换器ADC动静态参数测试解决方案

是德科技与 Intel Foundry 强强联手,成功验证支持 Intel 18A 工艺技术的电磁仿真软件

更多精选电路图

电容降压限流式电源

易制的LM386集成电路信号寻迹器电路

一个带LDR的轻型围栏电路图

如何增强基本低通滤波器的性能

6晶体管Tilden H桥电路分析

短波AM发射器电路设计图

换一换

更多

相关热搜器件

 STM32L4P5VGT6P

 HP8K24TB

 PDZVTFTR4.7B

 IDT7217L55FB

 MQ1N4734URE3

 EN2997K61831B7

 ECS-98.3-18-4XEN

 575L25CA12M2880

 VI-233-MU-F4

 ATT-292F-82-HEX-02

 TV06RQW-25-20PB-LC

 960103-6202-AR

 SIT1602BC-23-28S-33.000000G

 MF0207FTE52-34R8

 MS3475W2255AW

 800-033-BCH6ZN6-7PZ-72

 JANTX1N6643

 51101-3020R

 94550-854H

 TMM-111-05-G-S-SM-11-P-M-TR

 98775-103LF

 MB911T25N19SD

 DL4753

 ABM3-10.000MHZ-18-R060-4-W-T

 HQDPR-060-40.0-STL-SBL-3-F

 0805YAR50DAT7A

 CO-204B59VJL1AT2MHZ

 0603J10008R2CCT

 MMC-12-A-9505-2-C-1-R-3

 CT1-L14Y5V5D153STEW

 VSM080517R800TCR2CBT

 RWR78N1R82BPS73

 RWR84N1R24DMRSL

 102S58E122GG3E

 54122-414-24-1400

 7109LH3V9SE2

 TBJB475J010CRLZ045

 R1213N-A104L-10KC/M

 SL3-054-S320/01-66

 LTSHCR-130-S-22-550-GT-LT-001

 HS534286F55IFT

 P1206K2294BBPF

 82R3J-V30-H13/H13/H13

 RN73G3ATE2642D

 547218

 KWVS-13D-H

 ABM2-07.000MHZ-8-B-1-H-T

 M55342K06B21A0RT1

 CR-10DL7--453R

 SON-N999LF-02-33R2-FD

更多热门文章

超声波液位计液位测量软件的框架

瓴盛科技迎新战略投资者 携手小米赋能产业发展

Credo 有源电缆产品家族再添新成员:第二代HiWire™ SPAN AEC

要学特斯拉?小米可能采用纯视觉自动驾驶方案

STM32F40xxx 与 STM32F41xxx Flash结构详解

基于单片机的数字时钟系统设计

贸泽联手Apex Microtechnology推出全新电子书 探索高可靠性设计中的挑战与难点

示波器眼图如何分辨信号质量

叠片短刀成锂电行业趋势,验证蜂巢能源技术前瞻性

更多每日新闻

800V架构下,给连接器带来了哪些“改变”?

中国智驾市场「迷雾」,洗牌开始

一文了解什么是BEV感知?

汽车网络安全误区

一文详解智能座舱舱内感知技术

超强性价比!魔视智能发布全新商用车前装AEB系统

宝马集团将在照明系统中采用ADI技术、欧宝公布汽车照明技术最新突破·······

欧洲已经出手!触控大屏的“歪风邪气”该刹车了

智驾新突破!长城真无图NOA技术视频震撼曝光!展现复杂路况应对

三星SDI公布最新固态电池技术,充电速度及使用寿命均有惊人突破

更多往期活动

快来!月月有奖第27期开始了~

观看赢好礼——京东卡等你拿!

有奖直播|ADI在可穿戴产品中的生命体征监测解决方案

【抢楼赢礼】聊聊我用过的MOSFET!

【温故喝新之单片机版块】温2016年MCUs,喝2017年版块新篇章

听技术大咖侃谈Type-C 测量那些事儿—— 即刻获取能量,轻松闯关赢礼品!

TI SensorTag创意设计大赛重磅开启!

安森美半导体重磅推出超低功耗蓝牙芯片 RSL10 — 观视频答题送样片 更有丰富礼品等你拿!

厂商技术中心

TI 技术论坛

TI 在线培训

Qorvo 射频技术研习社

随便看看

贴片式元器件的拆卸、焊接技巧

硬件电路调试测试测量中的陷阱(转)

从系统角度理解设计工程师

单片机定时器与AD采集

有关LPC812最小系统版的问题

版主们!从06月开始,每月定时发放芯币

如何编译这个cm7到u8500去

1

IAR for AVR中嵌入汇编,在汇编代码中如何引用C变量?

【SC8905 EVM测评】+放电输出调压

About Us

关于我们

客户服务

联系方式

器件索引

网站地图

最新更新

手机版

站点相关:

信号源与示波器

分析仪

通信与网络

视频测试

虚拟仪器

高速串行测试

嵌入式系统

视频教程

其他技术

综合资讯

词云:

1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室

电话:(010)82350740

邮编:100190

电子工程世界版权所有

京B2-20211791

京ICP备10001474号-1

电信业务审批[2006]字第258号函

京公网安备 11010802033920号

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved

示波器基本原理之七:示波器的基本测量-电子工程世界

示波器基本原理之七:示波器的基本测量-电子工程世界

|首页|

电子技术|

电子产品应用|

电子头条|

社区|

论坛

测评

博客

电子技术视频|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

|首页|

电子技术|

电子产品应用|

电子头条|

论坛|

大学堂|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

测试测量

测试测量>信号源与示波器> 示波器基本原理之七:示波器的基本测量

示波器基本原理之七:示波器的基本测量

发布者:SparkStar22最新更新时间:2021-07-05

来源: eefocus关键字:示波器  基本原理  基本测量

手机看文章

扫描二维码随时随地手机看文章

收藏

评论

分享到

微博

QQ

微信

LinkedIn

一旦您已采集到信号并将其显示在示波器上,下一步通常是在波形上进行测量。示波器现在具备极其丰富内置测量功能,使您能迅速分析波形。这些基本测量的范例包括:上升时间:上升时间是上限阈值上的时间减去您正在测量的边缘的下阈值上的时间。下降时间相似,即下阈值上的时间减去您正在测量的边缘的上限阈值上的时间。脉宽:脉宽是从第一个上升沿的中间阈值到下一个下降沿的中间阈值的时间。幅度和其它电压测量:这是波形显示幅度的测量。通常您也可测量峰峰值电压、最大电压、最低电压以及平均电压。周期 / 频率:周期定义为中间阈值两次连续交叉点电压之间的时间。频率定义为 1/周期。示波器上还有许多其它测量,这里仅是提供给您一些基本的测量概念。

关键字:示波器  基本原理  基本测量

引用地址:示波器基本原理之七:示波器的基本测量

上一篇:示波器基本原理之六:示波器的基本控制

下一篇:示波器测量之波形捕获率

推荐阅读最新更新时间:2024-02-29 15:04

为什么你的泰克示波器老“生病”?

示波器是电子测量中最常用的仪器之一。它不仅能够直接观测和真实显示被测信号,而且还可以观测脉冲信号的前后沿、脉宽、上冲、下冲等参数。为保证示波器的正常使用和测量精度,应对示波器定期进行检定和校准。通用示波器的很多技术指标难以用一般仪器直接检定,采取间接方法利用常用电子测量仪器既可达到检定的目的,又可以扩展它的使用范围,提高它的测量精度。因此示波器就成为了测试工程重要的工作伙伴,尤其是泰克示波器,是80%工程师都青睐的品牌。 很多工程师示波器使用一段时间就会发现仪器用起来有点怪,开机异响,画面不正常……那这示波器究竟是怎么了?是不是坏了呢?那么问题来了,怎么去避免示波器出现这些怪异现象呢?那就要定期对示波器进行体检的,但是有的工程

[测试测量]

示波器基本原理之六:示波器的基本控制

当今市场上的许多示波器都具有各自控制方法,包括使用前面板、触摸屏或软键。在大部分示波器上所发现的基本控制包括: 水平控制:示波器的水平控制通常聚集在标有水平的前面板区间。这些控制可让您对显示器的水平尺度做出调整。在x轴上会有一个指定时间/格的控制。此外,减少每格的时间可让您把窄小的时间范围放大。还将会有一个对水平延迟(位移)的控制。此控制可让您扫描一段时间范围。 垂直控制:示波器上的垂直控制通常聚集在标有垂直的前面板区间。这些控制可让您对显示器的垂直方位做出调整。例如,在显示网格的y轴上会有一个指定V/格的控制。您可通过减少每格的电压幅度放大某一波形,或可通过增加每格的电压幅度缩小某一波形。还有一个对波形垂直偏移的控制。这

[测试测量]

示波器探头基础系列之四—— 探头在捕获高速信号上的技术

中心议题: 差分探头比单端探头的固有负载小 待测信号的探头额定负载效应可以量化 探头负载效应的评估方法 解决方案: 采用非常对称拓扑抑制尖端共模电压 精确的等效电路是首要的 简介 测量PCIe,SATA和其它快速模拟和数字信号等宽带信号时总是需要高阻抗探头。通过线缆直接连接高频信号到测量仪器只是适合通常的一致性测试和PCB验证等应用场合,但是大多数信号必须在系统运行时进行观察以便确定整个工作系统中的信号特性。大多数探头是单端,也就是测量共地信号,需要通过地线连接探头尖端附近的地和待测设备的地。这种探头很难测量本地信号地与仪器地有很大区别的信号。地也可以与待测设备的地在一起。 设计者可以通过差分传输高速信号避免地连

[测试测量]

种将黑白电视机改装成示波器的方法

  这里介绍一种将黑白电视机改装成示波器的方法。下图所示为有触发扫描同步功能的单踪示波器,改装之后,可观测黑白电视机图标的全部波形和彩电的各级波形。   改装方法 改装条件,电视机只要能出光栅,对电路形式无需改动。改装时,只需把电视机偏转线圈的接线从电路上断开,将行偏转线圈接到改装板T2的C极,场偏转线圈接到T7的C极,再把偏转线圈转动90°即可。   电路原理 把电视机偏转线圈断开后,屏幕上的光栅就会收缩成一个亮点。由T8、T9、T10等组成的位置检测电路,通过L2两端的电压差来检测亮点的位置。当水平偏转线圈L2两端无电压差时,电子束未受偏转,亮点在屏幕中间位置,此时T7的C极电压等于电源电压,使T8、T9截止。T9输出

[测试测量]

高校实验室如何选择合适的示波器

  示波器作为一种基础的测试仪器,曾几何时,还是高校实验室里的宠物。那时一个实验室二三十个学生围着一台示波器听老师的讲解和进行测试。随着我国经济实力的大幅度提升和国家对教育事业的大力支持,如今示波器已经成为高校电子类实验室的必备仪器。甚至在许多的职业教育学院也配备了很多不同档次的示波器。面对市场上众多举的示波器,如何按照实验室的测量需求来选择合适的产品,已经成为许多高校面临的紧迫问题。   ◆ 目前示波器行业的现状   示波器主要分为两大类:模拟示波器和数字存储示波器。   1、模拟示波器的现状。目前主要的模拟示波器的制造厂商正在呈现逐渐减少的趋势。美国从90年代中期就已经停止了模拟示波器的生产,日本也只剩2-3家。国内尚有1

[测试测量]

基于DSP的数字存储示波器显示控制系统的设计

一种基于DSP的数字存储示波器显示控制系统的设计方案。该系统主要由主机接口电路、数据处理电路及显示控制电路三个部分构成。介绍了系统的总体结构,并分析了其主要模块的工作原理,介绍了软件设计思想和程序流程图。该系统具有图形、字符、汉字的显示功能,可广泛用于智能代仪表和工业控制等领域中,用作终端显示。 关键词:DSP高级显示控制器 数字存储示波器 图形显示 1 系统硬件结构 2 主要功能模块的设计 2.2 数据处理电路 HD63484作为标准的外部设备与MPU连接,占用两个MPC的I/O空间。HD63484不具备指令存储器,仅有一个很小的指令缓冲区(16字FIFO,8字读,8字

[测试测量]

使用示波器查找异常毛刺出现的原因

异常毛刺、非单调边沿和亚稳态信号是几类经常使工程师感到烦恼不已、寝食难安的信号异常。对异常进行故障诊断通常分三步走: 观察识别;确认异常存在 信号隔离;将异常信号与良好信号分离 分析收集;查找导致根本原因的线索(例如频率异常、独一无二的码型、或者其他标识以对第一个异常的原因进行诊断。) 本应用指南是对 Keysight InfiniiVision 6000 X 系列示波器的内置自动演示之一“查找造成毛刺的耦合信号”的补充。本应用指南包括下列内容: – 快速波形捕获率及其为何如此重要的原因 – 硬件 InfiniiScan 区域触摸触发及其如何能加速您的信号隔离 – 色度可支持的分段存储器,及其如何对您的信号提供更深入分析 –

[测试测量]

示波器12bit“芯”趋势,如何实现更高测量精度?

提高垂直分辨率一直是示波器设计者的目标,因为工程师需要测量更精细的信号细节。但是, 想获得更高垂直分辨率并不只理论上增加示波器模数转换器(ADC)的位数就能实现的。泰克4、5和6系列示波器采用全新的12位ADC和两种新型低噪声放大器,不仅在理论上提高分辨率,在实用中垂直分辨率性能也大大提升。 这些颠覆式的产品拥有高清显示器和快速波形更新速率,并且实现更高的垂直分辨率来查看信号的细节。 本文重点介绍泰克4、5和6系列MSO设计者实现更高分辨率采集细节所采用的技术,另外还介绍了有效位数(ENOB)指标,以及这一重要性能指标的作用和局限性。 先来看一个电源开关实测对比 在这个例子中,我们想要观察一个相当大的开关

[测试测量]

热门资源推荐

热门放大器推荐

更多

 工业机器人应用基础 (张宪民 杨丽新 黄沿江)

 华中数控系统装调与实训

 机器人学 (蔡自兴)

 介质谐振器的微波测量 (倪尔瑚)

 开关电源仿真与设计基于SPICE 第2版 高频电路基础 线性系统理论 (第2版) python从入门到实践

 OPA2681U/2K5

 LT1881AIN8#TR

 HA2-5135/883

 TC1039NECH713

 LTC1541IS8#PBF

 AD744BH/+

 UA748HC

 MAX9911EXT+

小广播

添点儿料...

无论热点新闻、行业分析、技术干货……

发布文章

推荐内容

如何利用现代示波器实现准确测量(二)

研讨会 : Tektronix 嵌入式系统调试及混合信号系统验证测试中示波器的使用

Tektronix 用混合信号示波器探索总线的秘密

泰克MDO3000混合域示波器的测量应用

玩转示波器,2017年是德科技干货教程汇总

【电路】静态开关基本原理图

【电路】热敏电阻电桥式测量基本电路图

【电路】基本RTD温度测量电路

【电路】MOS图像传感器示波器成像电路

【电路】场效应晶体管双踪示波器开关

【电路】示波器较准器

热门活动换一批更多

■报名赢【养生壶、鼠标】等|STM32 Summit全球在线大会邀您一起解读STM32方案

■MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~

■最能打的国产芯们

■村田在线课堂:移动篇

■学习赢京东卡 | 从12V电池及供电网络优化的角度分析电动汽车E/E架构的趋势

■有奖直播 | 同质化严重,缺乏创新,ST60毫米波非接触连接器,赋予你独特的产品设计,重拾市场话语权

■罗姆有奖直播|从0到1,带你了解电机及其驱动 开始报名啦~

最新测试测量文章

是德科技与 Intel Foundry 强强联手,成功验证支持 Intel 18A 工艺技术的电磁仿真软件是德科技与 Intel Foundry 强强联手,成功验证支持 Intel 18A 工艺技术的电磁仿真软件•设计工程师现在可以使用 RFPro 对 Intel ...

罗德与施瓦茨RedCap测试解决方案获得GTI Awards2024大奖罗德与施瓦茨R&S CMX500 无线通信测试仪支持RedCap从早期研发到认证和一致性测试而荣获GTI Awards 2024移动技术创新突破奖。GTI 在世 ...

是德科技发布2024技术趋势预测,新一轮技术变革机遇浮现(下篇)科技点亮未来,创新驱动发展。随着科技创新的步伐日益加快,2024年将迎来新一轮的突破,有望从根本上重塑整个世界的生活、互动和交流方式。 ...

是德科技发布2024技术趋势预测,新一轮技术变革机遇浮现(上篇)科技点亮未来,创新驱动发展。随着科技创新的步伐日益加快,2024年将迎来新一轮的突破,有望从根本上重塑整个世界的生活、互动和交流方式。 ...

【探索前沿 测试为先】低电压测试,AI技术热潮背后算力核心的重要支撑2023什么最火?无疑是以ChatGPT为代表的AGI (通用人工智能)了,甚至被称之为第四次工业革命的推动者。比尔·盖茨说,“ChatGPT像互联网发 ...

【泰克应用分享】如何实现MSO示波器更多通道的测试

是德科技2024年第一季度业绩公布,表现出强大执行力

新型六位半数字电压测量模块助力突破工业精密测量边界

是德科技成功验证 3GPP Release 16 16/32 通道发射机性能增强测试用例

更多精选电路图

电容降压限流式电源

易制的LM386集成电路信号寻迹器电路

一个带LDR的轻型围栏电路图

如何增强基本低通滤波器的性能

6晶体管Tilden H桥电路分析

短波AM发射器电路设计图

换一换

更多

相关热搜器件

 SFH 320-Z

 NJM12884U2-33-TE1

 RB521SM-40FHT2R

 QBH-845

 MAL215267339E3

 IS61C1024AL-12TI

 803-43-097-10-004000

 LTST-S270TGKTBINQ1

 Z8F2422AR020SG

 S8GCHR6G

 BC 885 EXD

 HC-49/U-FREQ-3OT-STBY5-TOL1-CL2-DL2

 MP2-H240-5ES3-S-TR30

 QTLP603CEB.7800D

 TSSD10L60SW

 54242-102462400LF

 54122-805-64-1250R

 68498-235H

 MP2-H180-57S3-S-FJ

 CDRH4D16FB/NP-220NB

 AF119A-49-13

 804-015-AA2NF6-4PD-72

 LPC-CC-8/10

 V18ZA1PX10

 UM-1/110FF4.990MHZ

 ASFLK-1-32.768KHZ-N-T

 RSB6VP32120214

 AMBRP560

 MSV-2100-7CT-4

 MC1206W-4642-FB

 B32232A3685J000

 TAZA685J004CSL0800

 46KW433040M1KG

 2540IDC-19GDU24-L

 PEG32SS-MBFT520

 U18J16ZBE21

 SL1-020-SH198/01-98

 SL3-042-S267/01-95

 RKL12RDSTB823/823J

 C1812F203M4RACTM

 CXOQHG2FSNSM5-40.0M,25/50/-/C

 SBT-BGA-6039

 RNC60J2800FPR36

 RBS-4F-B/BL

 SBS-2B-F/Q

 M80-4T12242F1-10-301-04-321

 C2824H153MUGWLT050

 SFP14000DCGNHWS

 B43303C2687M000

 SON-N954LF-07-3050-DG

更多热门文章

基于51单片机的电梯控制系统

揭秘OPPO首款芯片背后:影像专用NPU,从IP算法到流片自研

山东提出集成电路流片费补助政策最高补助300万元

松下的动力电池技术路线

msp430低功耗LPM

PLC控制设备手动和自动切换功能的方法

PTI600经济型在线测试仪产品特点

意法半导体Cassis:如何迎接下一个“自动化时代”

GPT-15000系列电气安全分析仪的应用型号及特点分析

更多每日新闻

800V架构下,给连接器带来了哪些“改变”?

中国智驾市场「迷雾」,洗牌开始

一文了解什么是BEV感知?

汽车网络安全误区

一文详解智能座舱舱内感知技术

超强性价比!魔视智能发布全新商用车前装AEB系统

宝马集团将在照明系统中采用ADI技术、欧宝公布汽车照明技术最新突破·······

欧洲已经出手!触控大屏的“歪风邪气”该刹车了

智驾新突破!长城真无图NOA技术视频震撼曝光!展现复杂路况应对

三星SDI公布最新固态电池技术,充电速度及使用寿命均有惊人突破

更多往期活动

【抢楼有礼】TI TMS320F28377S 入门经验大搜集!

【EEWORLD第三十二届】2011年11月社区明星人物揭晓!

【抢楼有礼】聊聊我们遇到的电感问题!

打卡英飞凌碳化硅MOSFET新品快闪店

直播已结束|TI C2000 Piccolo 单芯片——实现双轴伺服电机和马达控制

让是德科技带我们一起 了解汽车电子车载系统解决方案 看视频答题赢好礼!

答题有礼 惊喜尽在恩智浦技术中心!

领跑2021,你准备好了么?领取下载积分,点燃学习小宇宙!

有奖直播:远近皆宜的无线连接方案 3月25日(周四)上午10:00 邀您观看!

厂商技术中心

TI 技术论坛

TI 在线培训

Qorvo 射频技术研习社

随便看看

贴片式元器件的拆卸、焊接技巧

硬件电路调试测试测量中的陷阱(转)

从系统角度理解设计工程师

单片机定时器与AD采集

有关LPC812最小系统版的问题

版主们!从06月开始,每月定时发放芯币

如何编译这个cm7到u8500去

1

IAR for AVR中嵌入汇编,在汇编代码中如何引用C变量?

【SC8905 EVM测评】+放电输出调压

About Us

关于我们

客户服务

联系方式

器件索引

网站地图

最新更新

手机版

站点相关:

信号源与示波器

分析仪

通信与网络

视频测试

虚拟仪器

高速串行测试

嵌入式系统

视频教程

其他技术

综合资讯

词云:

1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室

电话:(010)82350740

邮编:100190

电子工程世界版权所有

京B2-20211791

京ICP备10001474号-1

电信业务审批[2006]字第258号函

京公网安备 11010802033920号

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved